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Presentation outline

• Scope of vacuum vessel task area

• Design requirements

• Design concept and features

• Analysis status

• Summary
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FIRE vacuum vessel



6 June 2001 FIRE Review:  Vacuum Vessel Design 4

Vacuum vessel functions
• Plasma vacuum environment

• Primary tritium confinement boundary

• Support for in-vessel components

• Radiation shielding

• Aid in plasma stabilization
− conducting shell
− internal control coils

• Maximum access for heating/diagnostics
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Vacuum vessel requirements

• Provide reliable lifetime component
− remotely welded joints are double contained
− all bellows are double contained

• High quality vacuum
− outgassing and leak rate < 10-5 torr-l/s
− bakeable to 150C
− all welded construction, including torus field joints

• Must withstand all possible combinations of normal and 
fault loads
− internal pressure, coolant pressure
− EM loads on vessel and internals (including VDEs)
− weight and seismic loads on vessel and internals
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Vacuum vessel requirements (2)

• Provide system to remove and add heat
− Normal oper. - nuclear heating and surface heating from PFCs
− Off-normal oper. (passive, natural convection during LOCA)
− Bakeout to 150C

• Provide for pressure suppression/relief in case of internal 
leaks

• Provide specified electrical properties for passive 
stabilizing function (no electrical breaks required)

• Provide access ports for heating (no NBI), diagnostics and 
remote maintenance
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Vacuum vessel requirements (3)
• Provide for remote maintenance

− Field joints must be capable of remote leak testing and repair
− In-vessel re-configuration must be possible
− Remote TF coil replacement TBD, VV should not be a constraint

• Design and fabricate vessel shell in accordance with general 
provisions of accepted (e.g. ASME) code

• Fabricate and assemble within acceptable tolerances
− Vessel height and width within +/- 20 mm
− Wall section thickness within +/- 5 mm
− Location with respect to magnets within TBD

• Provide for pressure and vacuum testing
• Use materials suitable for high vacuum, but there is no 

requirement for low activation of specific class of waste disposal
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Vessel shell dimensions
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Vacuum vessel parameters
• Configuration: Double wall torus

− Shielding water + steel with 60% packing factor
− Volume of torus interior 35 m^3
− Surface Area of torus interior 89 m^2
− Facesheet thickness 15 mm
− Rib thickness 15 - 30 mm
− Weight of structure, incl ports 50 tonnes
− Weight of torus shielding 80 tonnes

• Coolant
− Normal Operation Water, < 100C, < 1 Mpa
− Bake-out Water ~150C, < 1 Mpa

• Materials
− Torus, ports and structure 316L ss
− Shielding 304L ss (tentative)
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Vessel port configuration
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Vessel port details

Midplane port
Port dimensions = 0.71 x 0.63 x 1.25 m
Cross sectional area of port ~ .8 m2

Auxiliary port
Port dimensions = 0.47 x .104 x .180 m
Cross sectional area of port ~ .067 m2
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Vessel fabrication concept
• Vessel manufactured in octants

• Each octant made from 4 major subassemblies, 

− Inboard, with integral passive plates
− Outboard, with integral passive plates, active coils, and midplane port 

openings
− Upper and lower sections with integral port assemblies, divertor brackets

• Ports are added after octant is assembled in TF coil pair

• Octants are joined with inboard splice plates
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Vessel inboard shell fabrication

Weld the formed 
extrusions together

•Machine surfaces of steel weldment,
•Fab copper by gun drilling/machining 
or use a sandwich structure
•Attach manifolds to copper

Diffusion bond the formed 
copper assembly to the 
steel assembly
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Vessel outboard shell fabrication

•Weld ribs and port stubs 
to inner skin

•Add conduit for active 
control coils

Diffusion bond copper 
to inner face sheet

Join two ½ sections 
to form one octant
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Vessel upper and lower shell fab.

•Weld ribs to inner skin
•Add port reinforcing stubs

Form and trim inner skin
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Vessel octant subassembly fab. 

Weld inner skins and ribs of 
inboard, outboard, top and 
bottom sections together

Add shielding subassemblies 
between ribs
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Vessel octant subassembly fab. (2)

Add outer skin on / between ribs Completed octant ready for assembly
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Vessel octant subassembly fab. (3)
• Octant-to-octant splice joint requires double 

wall weld
• All welding done from plasma side of vessel
• Splice plates used on plasma side only to 

take up tolerance and provide clearance
• Plasma side splice plate wide enough to 

accommodate welding the coil side joint
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Vessel support concept
• Links and ribs provide vertical and lateral support between 

vessel and TF coil structure
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Nuclear shielding concept
• Vessel shielding, port plugs and TF coils provide hands-on access to port 

flanges
• Port plugs weigh ~7 tonnes each as shown, assuming 60% steel out to TF 

boundary
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Port plug designed for RH

VV to Cryostat seal

VV port flange

Midplane port plug

Connecting plate

Cryostat panel

• Plug uses ITER-style connection to vessel, accommodates 
transfer cask
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Active and passive stabilizing sys.

Active control coils, 
segmented into 
octants IB and OB passive 

stabilizing conductor

• passive plates ~25 mm thick copper with integral cooling
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Passive conductor is also heat sink

• Copper layer required to 
prevent large temperature 
gradients in VV due to 
nuclear heating, PFCs

• Passive plates are required 
in most locations anyway

• PFCs are conduction 
cooled to copper layer
− Reduces gradient in 

stainless skin
− Extends pulse length

VV
PFC Tile

Cu Passive 
stabilizer

Cu filler

Gasket

VV splice plate
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Active coils integrated with vessel
• 2 pairs of 40 mm ID conduits located between double walls of vessel
• MgO insulated cables inside conduit, with redundant cables 
• Leads and jumpers bypass around the octant assembly joints
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Vessel analysis

• Vessel subjected to numerous loading conditions
− Normal operation (gravity, coolant pressure, thermal loads, etc.)
− Disruption (including induced and conductive (halo) loads
− Other loads (TF current ramp, seismic, etc.)

• Preliminary FEA analysis performed 
− Linear, static stress analysis
− Linear, transient and static thermal analyses

• Main issues are disruption loads, thermal stresses
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Vacuum vessel mechanical loads
Load Value Comment
Gravity load ~3.5 MN VV ~130 tons, FW,div. ~35 tons,

port plugs ~ 185 tons
Vertical displacement event (VDE) load

Vertical
Lateral, net

16 - 32 MN
6 - 11 MN

Based on J. Wesley guidance [1]

Seismic load (assumed)
Vertical acceleration
Lateral acceleration

0.2 g
0.2 g

Maximum total vertical load ~22-42 MN Gravity + VDE * 1.2 (dyn load factor)

Maximum total lateral load ~8-14 MN VDE * 1.2 (dyn load factor)

Maximum local EM load
Local pressure on vacuum vessel from
internal components

~4-7 MPa
Rough estimate from halo currents
with peaking factor up to 0.75 Ip

EM load from TF ramp ~0.75 MPa Poloidal conductivity of vessel
increased due to Cu stabilizers

Coolant pressure
Normal operation
Bakeout

<10 atm
<10 atm

[1] Disruption loads per Wesley, based on 10T, 50% halo current or 12 T, 40% halo current
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VV analysis, ANSYS FEA model*

• Model prepared by HM Fan

• 64 poloidal ribs inboard, 64
poloidal ribs outboard

• thickness of elements assumed as:

− 15 mm for vessel facesheets, 
− 30 mm for port at midplane, 

5 mm for port above/below
plane, 
idal ribs,

− 30 mm for OB ribs at supports 

* Ref H.M. Fan
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VV stress from TF ramp
• TF ramp to full current in 20 seconds
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Disruption effects on VV
• Disruptions will cause high loads on the VV due to induced 

currents and conducting (halo) currents flowing in structures (No 
thermal effects are expected for VV)
− Direct loads on vessel shell and ribs 
− Direct loads on passive plates 
− Reaction loads at supports for internal components
− Divertor assemblies and piping
− FW tiles
− Port plugs / in-port components (e.g. RF antennas)

• Dynamic effects should be considered, including:
− Load reversal during the event
− Shock loads due to gaps in load paths

• All loads should be considered in appropriate combinations
e.g. Gravity + coolant pressure + VDE + nuclear / PFC heating + Seismic + …
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Induced currents / loads will 
concentrate in passive structures
• Centered disruption simulation (C. Kessel ) shows current 

and field direction

Parameter IB passive plate OB passive plate
Est. induced current  (kA) 1500 800 
Bpoloidal  (assumed) (Tesla) 1 1 
Pressure   (Mpa) 3 1.6 
Direction “shear” “normal to surface” 
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Halo loads on divertor

• Force towards the VV on both 
inboard and outboard sides

• total force = 0.8 MN OB*
= 0.3  MN IB*

*ref  M.. Ulrickson
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Divertor loads from current loop
• Loads reverse at sides of divertor
*ref  M.. Ulrickson

1 MN

1 MN

Toroidal
Field

300 kA
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Stresses from divertor halo loads
• High stress around pins, > 30 ksi
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Halo currents in vessel

• Ip assumed to be 6.55 MA
• From C. Kessel, I halo = 2 MA
• From Wesley, I halo < 0.4 x Ip = 2.6 MA
• Max toroidal peaking factor = 2
• Max I halo < 0.75 Ip

Parameter Inboard Outboard
Avg radius of wall  (m) 1.3 2.6 
Current density, J = Ih/(2*pi*R) 
w/o TPF    (MA/m^2) 

0.25 0.125 

Jmax = 2 x Javg   (MA/m^2) 0.5 0.25 
Btoroidal    (Tesla) 16 8 
Pressure on wall  (Mpa) ~ 8 2 
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Stress on IB wall from halo
• Symmetric loading assumed, 4 MPa applied pressure over 

central region
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Gravity loads / VDE est.
• Vertical load = 3.5 MN incl. internals, nominal stress ~ 4ksi, peak = 6.5 ksi 
• VDE loads = 38 MN vertical, 13 MN lateral incl. dyn amp factor of 1.2
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Combined stress, start of pulse
• Stresses due to TF ramp, gravity, coolant pressure, vacuum
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Nuclear htg and thermal effects

• Vacuum vessel is subject to two basic heat loads:
− Direct nuclear heating from neutrons and gammas
− Heating by conduction from first wall tiles (which in turn are heated by direct 

nuclear heating and surface heat flux)

• A range of operating scenarios is possible, but the baseline case 
assumes:

− 200 MW fusion power 
− 100 W/cm^2 surface heat load on first wall tiles 
− pulse length of 20 seconds

• Vessel is cooled by water
− Flowing in copper first wall cladding
− Flowing between walls of double wall structure
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Heat loads on vessel, at midplane
• Fusion power of 200 MW
• Surface heat flux is variable, but 100 W/cm2 is assumed

D C
B

TileCu 
cladding

Double wall 
VV

A

Volumetric Nuclear Heating, 
IB midplane*

Location (W/cm^3)

A - Be FW   33.3
B - Cu FW   46.9
C – VV         33.8
D – VV         30.3

* ref M. Sawan
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Nuclear heating distribution*

1.6

2.4

2.7

2.0

3.0

3.6 MW/m^2

6.7 W/cc 
(behind divertor)

1.8
1.4

33.8 W/cc 30.9 W/cc30.3 W/cc 0.07  W/cc

18 W/cc 

17.9 W/cc 

0.04 W/cc
20 

W/cc

* Ref M. Sawan

Neutron wall loading 

Volumetric heating:

plasma side
coil side
divertor
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2-D temp distr after 20 sec pulse

Inboard midplane Outboard midplane
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3-D temp distr in VV after 20 s
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VV thermal deformation and stress
Peak

deformation stress
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VV thermal stress in skin and ribs

skin ribs
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Combined stresses, 20 s pulse
• Nuclear heating, gravity, coolant pressure, vacuum
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Preliminary VV stress summary

 

 
 

Torus and support points Ports and (Support points) 

Load condition General stressa 
(allowable stress 
= 195 MPa) 

Peak local 
stressa 
(allowable stress 
= 390 MPa) 

General stress 
(allowable stress 
= 195 MPa) 

Peak local 
stressa 
(allowable stress 
= 390 MPa) 

1. Gravity (w/internals) 15 23 (24) (45) 
2. Vacuum load ~10 ~25 TBD TBD 
3. Coolant pressureb 
(1 MPa) 

~100 ~130 TBD TBD 

4. Simulated VDEc <100 ~240 (~ 300) (~400) 
5. Halo Loads on divertor 120 170 (~150) (>400) 
6. Thermal stress from 
nuclear heatingd  

170 300 <200 ~330 

7. TF ramp-upe  ~ 25 ~ 32 TBD TBD 
Combined, 1,2,3,7 83 124   
Combined, 1,2,3,6  240  400 
aEstimated demarcation between general and peak local stress, peak primary + secondary = 3 × Sm. 
bStress values estimated from previous analysis 
cVDE loads applied in simplified manner  as body force, supports on outside.  
dTemperature gradient of ~90°C based on 20-s full-power pulse, simulated temperature distribution. 
eStress estimate based on 20 s current ramp in TF coils 
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Vacuum vessel design issues
• Thermal stresses vs pulse length

• Disruptions
− Load definition
− Divertor supports
− Vessel supports

• Passive stabilizing conductor integration / fab

• Concepts are being developed for:
− Divertor interface
− Vertical and lateral supports



6 June 2001 FIRE Review:  Vacuum Vessel Design 48

Summary
• Double wall vessel is appropriate for requirements

• Mechanical design and analysis indicate
− 15 mm facesheets ok with 1 Mpa limit for coolant pressure (with port 

reinforcement)
− 64 inboard and 64 outboard ribs
− large midplane ports have limited tangential access
− trapezoidal ports used for both divertor cooling and pumping
− active coils buried in VV walls looks feasible
− passive plates bonded to VV surface also provide FW heat sink

• Issues being addressed include:
− Disruptions / stresses / in-vessel component attachments / VV supports
− Thermal stress vs pulse length
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