FIRE Plasma Facing Component Cost Estimate

NSO Engineering Peer Review Meeting Princeton, NJ

Jun 4-6, 2001

Presented by Dan Driemeyer The Boeing Company

WBS 1.1 Plasma Facing Components Cost

U.S. Industrial Team

WBS	Element	Non-Rec (\$k)	Rec (\$k)	Subtotal (\$k)	Cont	Total (\$k)
1.1.1	First Wall	5,168	9,900	15,068	21%	18,295
1.1.2	Outer Divertor Modules	8,264	18,400	26,664	21%	32,260
1.1.3	Baffle Structures	2,910	6,500	9,410	59%	15,006
1.1.4	Inner Divertor Plates	2,075	3,600	5,675	21%	6,889
1.1.5	Limiters & Armor	772	1,200	1,972	21%	2,395
1.1.6	Wall Conditioning Systems	1,113	3,300	4,413	21%	5,336
<u>1.1.8</u>	PFC R&D Needs	8,700	0	8,700	26%	11,000
	TOTAL	34,102	37,800	71,902	27%	91,181

Estimate updated October 2000

Costs given in constant-year FY'99 dollars

Baffle contingency may not cover added cost of active cooling

Contingency should be sufficient to cover other open issues

WBS 1.1.1 First Wall Tile Costing

U.S. Industrial Team

Configuration

- 40-mm thick CuCrZr plates with 5-mm thick plasma-sprayed beryllium armor
- Wedge-shaped SS316LN rails bolted to vessel, provide mechanical support
- Rails include captive fastener hardware for loading thermal interface contacts with cooled vessel

Costing Basis

- **Quantity: 4 Proto, 8x16 IB, 8x16 OB**
- □ Production Yield: 90%
- Size: IB 220 x 580 x 40 mm OB 190 x 420 x 40 mm
- Material costs: Escalated from CY'97 values obtained for ITER
- Fabrication costs: Derived from vendor quotes for ITER involving comparable complexity components and materials
- Be-armor costs: Derived from ITER estimate and updated guidance from Brush-Wellman for S65B powder and 5-mm thick coating
 - Plasma Spray cost: \$2k /unit
 - S65B Powder cost: \$2k /unit
 - Recurring unit cost \$28k

WBS 1.1.2 Outer Divertor Costing

U.S. Industrial Team

Configuration

- SS316LN backplate structure/manifold
- 24 CuCrZr finger plates with W-brush armor, attached to backplate using roll pins
- Actively cooled using concentric pipe feed through divertor ports
- HIP-bond armor using separate canister welds around each finger plate
- HHF cycle plates to verify joint prior to integration

Costing Basis

- **Quantity: 2 Proto, 32 Production**
- □ Production Yield: 80%
- Size: 720 x 1500 x 60 mm CuCrZr plate 680 x 740 x 150 mm SS316 plate 508 mm long In 625 HW inserts 3 mm dia pointed W-rods 125 dia x 3000 mm coaxial water feed
- Material costs: Escalated from CY'97 values obtained for ITER
- Fabrication costs: Derived from vendor quotes for ITER vertical target involving comparable components and materials
- W-armor costs: Based on large area direct-HIP bonding development started for ITER
 - HIP-bonding cost: \$90k /unit
 - W-rod cost: \$17k /unit
 - Recurring unit cost \$388k

Open Issues

- Electrical connector costs not included, likely within contingency
- Baffle cooling implications not considered

5/25/2001

WBS 1.1.3 Baffle Plate Costing

U.S. Industrial Team

Configuration

- Passively cooled CuCrZr forging with
 W-brush armor for erosion control
- Attached to vessel using upper pins/rotating sockets and lower shear plates/pins
- HIP-bond armor over entire surface using single perimeter e-beam weld

Costing Basis

- **Quantity: 2 Proto, 32 Production**
- **Production Yield: 86%**
- Size: 600 x 750 x 200 mm CuCrZr forging 3-mm dia pointed W-rods
- Material costs: Escalated from CY'97 values obtained for ITER
- Fabrication costs: Derived from vendor quotes for ITER dome-PFC involving comparable components and materials
- W-armor costs: Based on large area direct-HIP bonding development started for ITER
 - HIP-bonding cost: \$43k /unit
 - W-rod cost: \$17k /unit
 - Recurring unit cost \$145k

Open Issues

 Need to update for actively-cooled configuration, contingency may not be sufficient

WBS 1.1.4 Inner Divertor Costing

U.S. Industrial Team

Configuration

- Passively cooled CuCrZr plate with
 W-brush armor for erosion control
- Attached to vessel using rail and fastener approach like first wall
- HIP-bond armor over entire surface using single perimeter e-beam weld

Costing Basis

- **Quantity: 2 Proto, 32 Production**
- □ Production Yield: 86%
- Size: 280 x 620 x 60 mm CuCrZr plate 220 x 50 x 30 mm SS316 rails 3-mm dia pointed W-rods Cu-foam layer for thermal contact
- Material costs: Escalated from CY'97 values obtained for ITER
- Fabrication costs: Derived from vendor quotes for ITER dome-PFC for comparable materials with reduction factors for passive cooling
- W-armor costs: Based on large area direct-HIP bonding development started for ITER
 - HIP-bonding cost: \$33k /unit
 W-rod cost: \$5k /unit
 - Recurring unit cost \$70k

Open Issues

Need to reassess following disruption effect mitigation resizing

WBS 1.1.5 Limiters and Armor and WBS 1.1.6 Wall Conditioning Cost

Configuration

- Startup Limiters and armor not specifically designed and priced for this estimate
- Expected configuration is toroidal belt limiters at two OB locations or OB poloidal rails at two toroidal locations
- Wall conditioning based on glow discharge cleaning system (CIT) and wall boronization system (TFTR)

Costing Basis Limiters/Armor

- **Quantitiy: 10% of First wall cost**
- Production Yield: TBD
- Size: Rail belt limiters at 2 locations PS-Be armor

Costing Basis Wall Conditioning

- Cleaning costs: Escalated CY'91 values for CIT glow discharge pumping system
 - Glow discharge cost \$1.2M
- Conditioning costs: Escalated CY'89 cost estimate for installing a diborane injection system in TFTR. Included complexity factor for implications associated with FIRE tritium levels and remote handling.
 - Wall conditioning cost \$1.3M

Open Issues

 Need to update once better definition is available

Required R&D Tasks to Confirm Design

U.S. I	ndustrial Team	
		Cost
	Complete W-brush fabrication process development and HHF testing begun under ITER to validate performance	\$1.5M
	Scale-up finger fabrication process (combine W-brush, SWT/HWI, and SS transition) to demonstrate, reliability, manufacturability, and NDE procedures for initial quality screening of critical bonds, welds, etc.	\$3.0M
	Demonstrate Cu-finger integration with SS back structure (pins, welds, alignment, etc.) through prototype fabrication and testing	\$1.0M
	Continue baffle fabrication process development and scale-up to demonstrate large-area HIP-diffusion bonding, W-brush integration, and end manifold closeout welds / SS transition joints	\$0.8M
	Develop effective passive heat transfer layer for first wall and inner divertor tiles (copper foam metals, etc.)	\$0.3M
	Fabricate and test electrical connectors to validate performance and in- service design guidelines	\$0.9M
	Fabricate end effectors/dummy elements to use for validating remote handling interfaces and procedures	\$0.2M
	Industrialize Be plasma spray process developed under ITER for the first wall armor application	\$0.9M
	Fabrication/testing to verify sliding pin mounting scheme and in-service performance	\$0.1M
	Total	\$8.7M

DED-8

BOEING®

Open PFC Costing Issues

- Active cooling will increase baffle unit cost (compare passive baffle to outer divertor) need to update estimate once conceptual design completed
- Need to assess toroidal electrical connector costs if they are adopted to help reduce disruption loading conditions
- Need to reassess inner divertor plate costs once changes due to disruption loads have been incorporated in the design

	U.S.	Industrial	Team
--	------	------------	------

Backup Charts

Starting Material Costs

PART NAME	MATERIAL	PRODUCT FORM	UNIT WGT/LEN	# TO MAKE	SCRAP RATE	MATERIAL NEED	MATERIAL UNIT COST	MATERIAL COST
			(kg or m)		(%)	(kg or m)	(\$/kg)	(\$ CY99)
FIRST WALL ELEMENTS 1.1.1								
Outer FW Plates	CuCrZr	plate	28	142	5	4,240	14.33	60,760
Inner FW Plates	CuCrZr	plate	45	142	5	6,770	14.33	97,015
Outer Attachment Rails	316L	plate	2	142	5	340	3.50	1,190
Inner Attachment Rails	316L	plate	3	142	5	390	3.50	1,365
Rail Cover Plates	CuCrZr	plate	3	426	5	1,400	14.33	20,062
Outer PS Beryllium Armor	Be	powder	1	142	10	150	1,100	165,000
Inner PS Beryllium Armor	Be	powder	2	142	10	240	1,100	264,000
Misc First Wall Items	all	all					5% extra	9,020
TOTAL 1.1.1							TOTAL	618,411
OUTER DIVERTOR MODULES 1.1.2								
Gundrilled Front Plates	CuCrZr	plate	577	34	5	20,590	14.33	295,057
HIP-Can Close-out Covers	OFHC Cu	plate	16.3	34	5	580	5.20	3,016
Cooling Channel Close-out	CuCrZr	plate	1.2	34	5	40	14.33	573
Helical Wire Inserts	In 625	spring	30.5	34	10	1,140	15.47	17,638
Backing Plate / Manifold	316L	plate	672	36	5	25,390	3.50	88,865
Finger Tube Stubs	316L	Seamless Tube	0.12	2040	5	250	68.80	17,200
Water Feed Lines	316L	Concentric Pipe	93.1	36	5	3,520	16.80	59,136
Attachment Structure	316L	plate	1.2	432	5	570	3.50	1,995
Tungsten Brush Armor	W-Rods	3-mm-dia	5.3	34	5	2,572,209	0.26	676,748
Misc Outer Divertor Items	all	all					5% extra	24,174
TOTAL 1.1.2							TOTAL	1,184,402

Starting Material Costs, Con't

PART NAME	MATERIAL	PRODUCT FORM	UNIT WGT/LEN	# TO MAKE	SCRAP RATE	MATERIAL NEED	MATERIAL UNIT COST	MATERIAL COST
			(kg or m)		(%)	(kg or m)	(\$/kg)	(\$ CY99)
BAFFLE STRUCTURES 1.1.3								
Starting Material	CuCrZr	hand forging	801	40	5	33,640	16.69	561,487
HIP-Can Close-out Covers	OFHC Cu	plate	13	40	5	540	5.20	2,808
Attachment Structure	316L	plate	1	432	5	570	3.50	1,995
Tungsten Brush Armor	W-Rods	3-mm-dia	4	40	5	2,387,279	0.26	628,093
Misc Inner Divertor Items	all	all					5% extra	28,315
TOTAL 1.1.3							TOTAL	1,222,698
INNER DIVERTOR PLATES 1.1.4								
Starting Material	CuCrZr	plate	93	40	5	3,890	14.33	55,744
HIP-Can Close-out Covers	OFHC Cu	plate	4	40	5	160	5.20	832
Attachment Rails	316L	plate	3	40	5	120	3.50	420
Rail Cover Plates	CuCrZr	plate	3	60	5	200	14.33	2,866
Tungsten Brush Armor	W-Rods	3-mm-dia	1	40	5	688,296	0.26	181,091
Misc Inner Divertor Items	all	all					5% extra	2,850
TOTAL 1.1.4							TOTAL	243,803
OUTER PASSIVE PLATES 1.2.4								
Starting Material	CuCrZr	plate	231	37	5	8,970	14.33	128,541
Attachment Rails	316L	plate	6	40	5	260	3.50	910
Rail Cover Plates	CuCrZr	plate	7	60	5	410	14.33	5,875
Outer PS Beryllium Armor	Be	powder	8	37	10	320	1,100	352,000
Misc Passive Plate Items	all	all					5% extra	6,473
TOTAL 1.2.4							TOTAL	493,799

Unit Cost Comparison for PFC Elements

	Firs t Wall	Outer Div	Baffle	Inner Div
Armor Form	PS-Be	W-Brush	W-Brush	W-Brush
Number Modules	284	40	37	37
Module Area (m2)	0.10	0.49	0.48	0.14
Yield	90%	80%	86%	86%
Starting Material Cost (\$K)	943	1,452	943	253
Recurring Fab Cost (\$K)	5,500	9,564	2,550	1,018
Armor Joining Cost (\$K)	948	3,311	1,457	1,127
Unit Fab Cost (\$K)	22.7	259.8	78.7	29.8
Unit Armor Join (\$K)	2.0	82.8	39.4	30.5
Unit Armor Mtl (\$K)	1.4	15.6	15.7	4.5
Total Unit Cost (\$K)	26.0	358.2	133.8	64.8

