

# Fusion Energy Sciences Program Update

Fusion Energy Sciences Advisory Committee



www.ofes.fusion.doe.gov

#### **Dr. N. Anne Davies**

Associate Director for Fusion Energy Sciences

February 28, 2006

#### **National Academy of Sciences Report**

Fusion is part of SC's part of the American Competitiveness Initiative



#### U.S. Department of Energy



## Office of Science FY 2007 Congressional Budget Request

|                                                        | (dollars in thousands) |                    |                                   |                        |
|--------------------------------------------------------|------------------------|--------------------|-----------------------------------|------------------------|
|                                                        | FY 2005<br>Approp.     | FY 2006<br>Approp. | FY 2007<br>President's<br>Request | FY 2007 vs.<br>FY 2006 |
|                                                        |                        |                    |                                   |                        |
| Basic Energy Sciences                                  | 1,083,616              | 1,134,557          | 1,420,980                         | +286,423               |
| Advanced Scientific Computing Research                 | 226,180                | 234,684            | 318,654                           | +83,970                |
| Biological and Environmental Research                  |                        |                    |                                   |                        |
| Base program                                           | 487,474                | 451,131            | 510,263                           | +59,132                |
| Congressional-directed projects                        | 79,123                 | 128,700            |                                   | -128,700               |
| Total, Biological and Environmental Research           | 566,597                | 579,831            | 510,263                           | -69,568                |
| High Energy Physics                                    | 722,906                | 716,694            | 775,099                           | +58,405                |
| Nuclear Physics                                        | 394,549                | 367,034            | 454,060                           | +87,026                |
| Fusion Energy Sciences                                 | 266,947                | 287,644            | 318,950                           | +31,306                |
| Science Laboratories Infrastructure                    | 37,498                 | 41,684             | 50,888                            | +9,204                 |
| Science Program Direction                              | 154,031                | 159,118            | 170,877                           | +11,759                |
| Workforce Development for Teachers and Scientists      | 7,599                  | 7,120              | 10,952                            | +3,832                 |
| Small Business Innovation Research/Technology Transfer | 113,621                |                    |                                   |                        |
| Safeguards and Security                                | 67,168                 | 68,025             | 70,987                            | +2,962                 |
| Subtotal, Science                                      | 3,640,712              | 3,596,391          | 4,101,710                         | +505,319               |
| Use of prior year balances                             | -5,062                 |                    | <u> </u>                          | <u> </u>               |
| Total, Science                                         | 3,635,650              | 3,596,391          | 4,101,710                         | +505,319               |

#### FY 2007 Fusion Energy Sciences Congressional Budget Request

| (\$ Millions)       |               |                       |                |  |
|---------------------|---------------|-----------------------|----------------|--|
|                     | FY 2005       | FY 2006               | FY 2007        |  |
|                     | <u>Actual</u> | <u>Appropriations</u> | <u>Request</u> |  |
| Science             | 148.5         | 156.9                 | 154.2          |  |
| Facility Operations | 89.7          | 103.5                 | 121.6          |  |
| Enabling R&D        | <u>28.7</u>   | 27.2                  | <u>43.2</u>    |  |
| <b>OFES Total</b>   | 266.9         | 287.6                 | 319.0          |  |
| DIII-D              | 55.8          | 54.7                  | 56.7           |  |
| C-Mod               | 22.0          | 21.7                  | 22.8           |  |
| NSTX                | 34.5          | 34.0                  | 35.1           |  |
| NCSX                | 18.3          | 17.8                  | 16.6           |  |
| ITER                | 5.4           | 25.1                  | 60.0           |  |
| Non-ITER            | 261.5         | 262.5                 | 259.0          |  |

- o Continue U.S. ITER Fabrication Effort (\$60.0M, +\$34.9M)
  - \$37.0M for MIE Project (Total Estimated Cost funding)
  - \$23.0M for R&D support (Other Project Costs funding)

#### **ITER Outyear Funding Profile**

U.S. Contributions to ITER - Annual Profile

(\$ in Millions – in as spent dollars)

| <u>Fiscal Year</u> | Total<br>Estimated<br><u>Costs (TEC</u> | Other Proje <u>Costs (OPC</u> | ct Total Project <u>C) Costs (TPC)</u> |
|--------------------|-----------------------------------------|-------------------------------|----------------------------------------|
| 2006               | 15.9                                    | 3.4                           | 19.3                                   |
| 2007               | 37.0                                    | 23.0                          | 60.0                                   |
| 2008               | 149.5                                   | 10.5                          | 160.0                                  |
| 2009               | 208.5                                   | 6.0                           | 214.5                                  |
| 2010               | 208.5                                   | 1.5                           | 210.0                                  |
| 2011               | 180.8                                   | .5                            | 181.3                                  |
| 2012               | 130.0                                   | 0                             | 130.0                                  |
| 2013               | 116.9                                   | 0                             | 116.9                                  |
| 2014               | 30.0                                    | 0                             | 30.0                                   |
| Total              | 1,077.1                                 | 44.9                          | 1,122.0                                |

#### FY 2007 Fusion Program Highlights (continued)

- o Increase Major Facility operations and research (+\$4.2M)
  - 12 weeks on DIII-D, 15 weeks on C-Mod, 12 weeks on NSTX

#### **Major Fusion Facilities Operating Times**



Years

### **Major Facilities**

| Funding (\$ in Millions) | <u>FY 2005</u> | <u>FY 2006</u> | <u>FY 2007</u> |
|--------------------------|----------------|----------------|----------------|
| DIII-D                   | 55.8           | 54.7           | 56.7           |
| C-Mod                    | 22.0           | 21.7           | 22.8           |
| NSTX                     | <u>34.5</u>    | <u>34.0</u>    | <u>35.1</u>    |
| Totals                   | 112.3          | 110.4          | 114.6          |

o The three facilities are the backbone of the U.S. Magnetic Fusion Program:

- Provide opportunities to ~500 scientists for fusion experiments;
- Advance fusion scientific understanding of plasmas in the U.S. and provide a strong U.S. presence in international collaborations;
- Give credibility to U.S. partnership in ITER.
- o In FY 2007, the total research and facility operations budget for the three facilities increases from \$110.4M to \$114.6M
  - DIII-D operations will increase from 7 weeks in FY 2006 to 12 weeks in FY 2007;
     C-Mod increases from 14 weeks to 15 weeks; NSTX from 11 weeks to 12 weeks.
  - Coordinated experiments on burning plasma physics and ITER physics support through the International Tokamak Physics Activity (ITPA) will have high priority
- o The U.S. will continue collaboration on foreign tokamaks for increased experimental opportunities.

#### FY 2007 Fusion Program Highlights (continued)

- o Increase SciDAC (+\$2.7M)
  - Includes two additional SciDAC projects

#### **Scientific Discovery through Advanced Computing**

|                       | <u>FY 2005</u> | <u>FY 2006</u> | <u>FY 2007</u> |
|-----------------------|----------------|----------------|----------------|
| Funding (\$ Millions) | 4.0            | 4.3            | 7.0            |

- o Supports multi-disciplinary teams of computer scientists, applied mathematicians, and physicists to achieve scientific advances through computer simulations
- o Existing fusion SciDAC projects in the areas of macroscopic stability, electromagnetic wave-plasma interaction, and turbulent transport will be continued
- o Two fusion simulation prototype centers, initiated at the end of FY 2005 in the areas of **RF** wave interactions with MHD, and the plasma edge will continue developing components for integrated simulations
- o In FY 2007, projects focused on the development of fusion collaboratories, integrated frameworks for fusion simulations, and other scientific application partnership areas will join our SciDAC portfolio

#### FY 2007 Fusion Program Highlights (continued)

- o Reduce Innovative Confinement Concepts research (-\$1.8M)
- o Reduce HEDP research (-\$3.9M)
- o Reduce Theory (-\$1.0M)
- o Reduce NCSX funding per baseline plan (-\$1.1M)
- o Reduce Plasma Technologies to focus on ITER specifics (-\$1.3M)
- o Reduce fusion materials science research (-\$2.4M)

#### **Innovative Confinement Concepts CE Program**

|                          | <u>FY 2005</u> | <u>FY 2006</u> | <u>FY 2007</u> |
|--------------------------|----------------|----------------|----------------|
| Funding (\$ Millions)    | <b>21.7M</b>   | <b>21.8M</b>   | <b>20M</b>     |
| Projects approximately   | 1M or more     |                |                |
| Labs                     | 7.1M           | 7.2M           | 6.7M           |
| Non-Labs                 | 6.5M           | 6.2M           | 5.6M           |
| Projects considerably le | ess than 1M    |                |                |
| Labs                     | 1.01M          | 1.03M          | 0.95M          |
| Non-Labs                 | 6.2M           | 6.3M           | 5.8M           |
| Other                    | 0.79M          | 1.05M          | 0.7M           |

- o The reduction (8.4%) in FY 2007 will be taken uniformly across all projects
- After 7 years of intensive review, the surviving crop of presently funded ICC CE projects have reviews rated in the Very-Good-to-Excellent range
  - Most are entering their second data gathering and analysis cycle
  - A major review of the program is planned for FY 2008/2009 time frame

#### HEDP

|                       | <u>FY 2005</u> | <u>FY 2006</u> | FY 2007 |
|-----------------------|----------------|----------------|---------|
| Funding (\$ Millions) | 14.6           | 15.8           | 11.9    |

- o Research in fast ignition and plasma jets is reduced by \$1.8M
- o Research in heavy ions is reduced by \$1.1M
- Research using the Atlas pulsed power facility is discontinued (\$1M)

#### **Theory Program Summary**

| Funding (\$ Millions) | <u>FY 2005</u> | <u>FY 2006</u> | <u>FY 2007</u> |
|-----------------------|----------------|----------------|----------------|
| Labs                  | 11.5           | 11.0           | 10.4           |
| Non-Labs              | <u>14.2</u>    | <u>13.9</u>    | <u>13.5</u>    |
| Total                 | 25.7           | 24.9           | 23.9           |

- o FY 2006 Theory solicitation resulted in 27 proposals with 13 being funding. FY 2007 Theory solicitation is currently underway
- Reviewed PPPL theory program, and will review the LANL and LLNL theory programs this fiscal year
- Created a partnership with OASCR to develop a continuum kinetic edge code, which will complement the Fusion Simulation Projects
- o FY 2007 funding reductions taken across the board

#### **NCSX Project**

| MIE Research | 8        | 8               | 13.9 |
|--------------|----------|-----------------|------|
| Total        | <u> </u> | <u></u><br>17.8 | 16.6 |

 A new baseline was established in July 2005 for NCSX that resulted in a 14-month delay in the schedule with completion in July 2009 and a new TEC of \$92,401,000. The FY 2007 request of \$15,900,000 supports this new baseline.

#### Enabling R&D

| Funding (\$ Millions) | <u>FY 2005</u> | <u>FY 2006</u> | <u>FY 2007</u> |
|-----------------------|----------------|----------------|----------------|
| Plasma Technologies   | 18.4           | 14.2           | 12.9           |
| Materials Research    | 7.3            | 7.1            | 4.7            |

- Plasma Technologies develops the cutting edge technologies that enable both current and future U.S. and international fusion facilities to achieve their goals.
- Materials Research is critical to establishing the environmental attractiveness of fusion
- o Both programs are being reduced to provide resources for ITER

# Fusion Energy Sciences (\$ in thousands)

| Science                          | FY 2005<br>Sept AFP | FY 2006<br>Appropriations | FY 2007<br>Request |
|----------------------------------|---------------------|---------------------------|--------------------|
| Second                           |                     |                           |                    |
| DIII-D Research                  | 24,042              | 24,412                    | 24,300             |
| C-MOD Research                   | 8,636               | 8,510                     | 8,890              |
| International Collaborations     | 5,116               | 4,826                     | 5,064              |
| Diagnostics                      | 3,894               | 3,763                     | 3,854              |
| Other                            | 5,364               | 5,006                     | 3,730              |
| SBIR/STTR (science)              | 0                   | 6,945                     | 7,262              |
| Subtotal Tokamaks                | 47,052              | 53,462                    | 53,100             |
| NSTX Research                    | 15,992              | 15,845                    | 16,696             |
| Experimental Plasma Research     | 21,656              | 21,778                    | 19,990             |
| HEDP                             | 14,640              | 15,856                    | 11,949             |
| ATLAS                            | (0)                 | (990)                     | (0)                |
| MST Research                     | 6,423               | 6,320                     | 6,970              |
| NCSX Research                    | 773                 | 751                       | 697                |
| Subtotal Alternates Research     | 59,484              | 60,550                    | 56,302             |
| Theory                           | 24,928              | 25,749                    | 23,900             |
| Advanced Computing/SciDAC        | 4,033               | 4,222                     | 6,970              |
| General Plasma Science           | 12,176              | 13,760                    | 13,941             |
| Science Total                    | 148,494             | 156,922                   | 154,213            |
| Facility Operation               |                     |                           |                    |
| DIII-D                           | 31,709              | 30,280                    | 32,362             |
| Alcator C-Mod                    | 13,402              | 13,207                    | 13,941             |
| NSTX                             | 18,495              | 18,140                    | 18,422             |
| NCSX                             | 17,500              | 17,019                    | 15,900             |
| Facility Ops times in weeks      | 16/18/18            | 7/14/11                   | 12/15/12           |
| Other                            | 1,433               | 1,298                     | 2,020              |
| GPE                              | 100                 | 100                       | 100                |
| GPP                              | 1,643               | 1,791                     | 1,810              |
| ITER Preparations                | 5,451               | 5,835                     | 0                  |
| U.S. Contributions to ITER (MIE) | 0                   | 15,866                    | 37,000             |
| Facility Operations Total        | 89,733              | 103,536                   | 121,555            |

| Enabling R&D                     | FY 2005<br>Sept AFP | FY 2006<br>Appropriations | FY 2007<br>Request |
|----------------------------------|---------------------|---------------------------|--------------------|
| Engineering Research             |                     |                           |                    |
| Plasma Technologies (MFE)        | 18,403              | 14,205                    | 12,945             |
| Advanced Design & Analysis (MFE) | 2,979               | 2,489                     | 2,550              |
| Enabling R&D for ITER            | 0                   | 3,449                     | 23,000             |
| Materials Research (MFE)         | 7,338               | 7,043                     | 4,687              |
| Enabling R&D Total               | 28,720              | 27,186                    | 43,182             |
| Total Fusion Energy Sciences     | 266,947             | 287,644                   | 318,950            |
|                                  |                     |                           |                    |
| DIII-D                           | 55,751              | 54,692                    | 56,662             |
| Alcator C-Mod                    | 22,038              | 21,717                    | 22,831             |
| NSTX                             | 34,387              | 33,985                    | 35,118             |
| NCSX                             | 18,273              | 17,770                    | 16,597             |
| ITER (Preparations & MIE)        | 5,451<br>261 496    | 25,150                    | 60,000             |
| NOII-11EK                        | 201,490             | 202,494                   | 238,930            |

#### **Representative Sherwood Boehlert (R-NY) During House Debate on 11/9/05**

"I want to make clear to everyone concerned that I will do everything in my power to kill the ITER project if there is not an agreement by March that the domestic fusion program has to be scaled back to pay for ITER. I am not going to allow the U.S. to enter into an international commitment that it cannot afford. I would rather kill the ITER project. The fusion community will have to be realistic. It cannot have all its current projects and ITER. And it will not." Funds provided in a tough federal budget must be used for relevant, peer reviewed research

Earmarks will be removed from agency budget in the next year

"... Most scientists funded by [OFES] do not actively participate in the wider scientific culture. As a result, the flow of scientific information out of and into the field is weak. ...Nor is the high-quality science in the program widely appreciated outside the field. Indeed, the broader scientific community holds a generally negative view of fusion science."

- National Research Council's Assessment of the DOE's Office of Fusion Energy Sciences Program, 2001

The Secretary of Energy must submit to Congress a plan which ensures that "communication of scientific results and methods between the fusion energy science community and the broader scientific and technology communities is improved."

- Energy Policy Act of 2005, Sec. 972(b)(1)(E)

- All of fusion will benefit from greater communication with and respect from other areas of science and technology
  - No direct incentive for broader communities to initiate
  - Energy Policy Act requirement and a good idea
- o OFES will track
  - Number of presentations at local colleges, alma maters, and other universities
  - Collaborations with scientists outside of plasma physics
  - Talks at non-plasma specific science meetings
  - Attempts to publish in broader science journals
    - Rejections okay data still useful
- First annual report from major facilities, ICC, and Theory leaders to be presented at March 2007 budget planning meeting
- o Line in grants and cooperative agreements may be added

#### New Charge to FESAC Evolution of the Fusion Energy Sciences Program



Department of Energy Office of Science Washington, DC 20585 February 27, 2006

Professor Stewart C. Prager, Chair Fusion Energy Sciences Advisory Committee Department of Physics University of Wisconsin 1150 University Avenue Madison, Wisconsin 53706

Dear Professor Prager:

For many years, the fusion program has benefited from international collaboration in all aspects of the program. With the advent of the ITER project, the program will achieve a new and unprecedented level of collaboration. Also, during the time before ITER operations begin, our ITER partners will be bringing a new suite of advanced tokamak facilities on line around the world. It is time for us to begin to plan for the transition to the operating phase of ITER, and, in so doing, assess how we can optimize our experimental physics program, considering all the facilities that will be available worldwide.

Therefore, I would like for FESAC to address an important set of issues: how the program should evolve over the coming decade to take into account new and upgraded international experiments and how the program should prepare to make the transition to ITER. Viewing the world fusion program as a fully integrated international endeavor rather than a series of national efforts, where will synergies, redundancies, and gaps in research arise, and how should the U.S. program adjust to minimize duplicate effort and fill important gaps? Should existing facilities remain in their current configurations, or should they be reconfigured to pursue the science of different concepts? Serious consideration should also be given to whether a point exists within the next 10 years when funds for any of the four major U.S. facilities may be better used for hardware and research on more capable facilities abroad.

FESAC has recently produced two comprehensive reports on the U.S. Magnetic Fusion Program, one titled "Scientific Challenges, Opportunities, and Priorities for the U.S. Fusion Energy Sciences Program" in December 2004, and the next titled "Characteristics and Contributions of the Three Major United States Toroidal Magnetic Fusion Facilities" in July 2005. These reports should provide a starting point for your work. This report should look strategically to the future, providing decision points and criteria for making those decisions. I will be able to provide budget guidance as soon as the Office of Science five-year budget is public. Given that funding will be finite, you will need to recommend priorities among the opportunities that you will identify. This is an exciting time for the fusion program, a time for the fusion community to look forward with confidence that we will have a burning plasma experiment, as well as support for the balance of the program. It is also a time to reassess our portfolio of experiments and optimize what we are doing in the context of the world fusion program.

I would like to receive your report by the end of February 2007. Thank you for your time and your hard work.

Sincerely,

2

Raymond L. Orbach Director

To find out more information on the position for Associate Director for Fusion Energy Sciences

Go to www.usajobs.opm.gov

Click on "Search Jobs" In "Keyword Search" type in Fusion At bottom of page, click "search for jobs"

Closing Date for application submission is March 31, 2006