
U. S. Science Interests in ITER

Gerald A. Navratil

Forum on the Future of Fusion Fusion Power Associates Washington, DC 19-21 November 2003

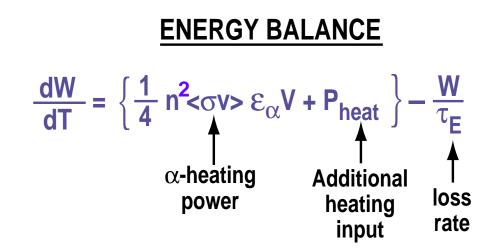
CONTEXT & REFERENCES

- US DOES NOT (YET) HAVE A BURNING PLASMA OR ITER PROGRAM ESTABLISHED: NO "OFFICIAL" LIST OF PRIMARY US SCIENCE INTERESTS
- VIEWS EXPRESED HERE ARE MY OWN, INFORMED BY PARTCIPATION IN US FUSION COMMUNITY BURNING PLASMA PLANNING ACTIVITY:
 - + UFA BURNING PLASMA WORKSHOPS: AUSTIN 2000; SAN DIEGO 2001
 - + SNOWMASS FUSION SUMMER STUDY 2002

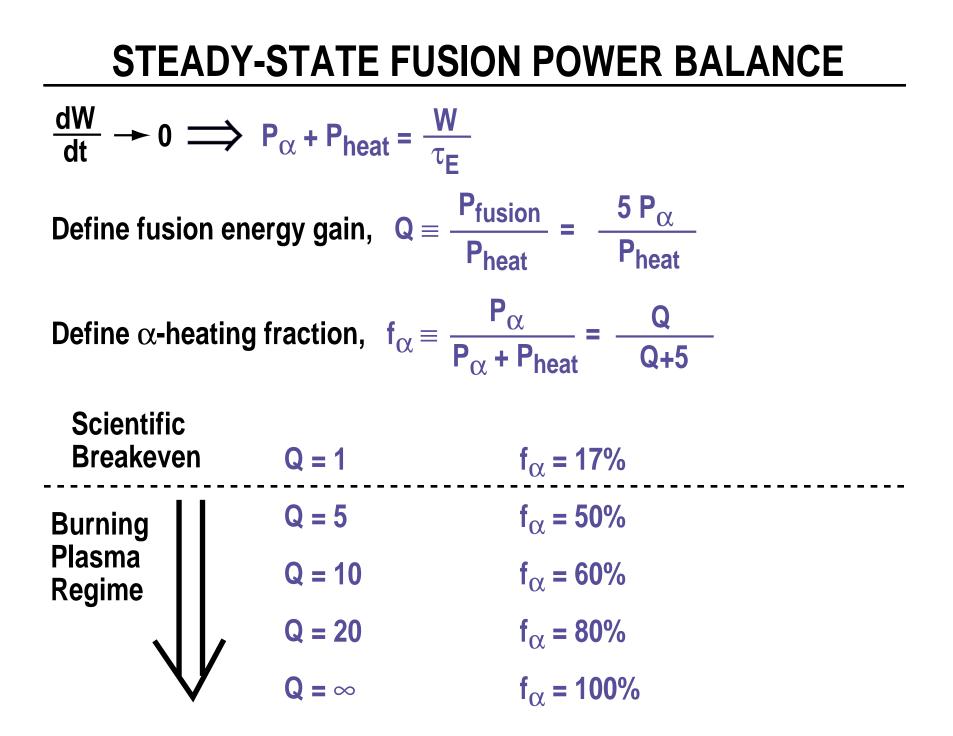
AND

+ INTERNATIONAL TOKAMAK PHYSICS ACTIVITY (ITPA)

OUTLINE


- BURNING PLASMA BASICS
- FRONTIER SCIENCE IN BURNING PLASMA:
 - + Q~5: α -EFFECTS ON TAE STABILITY
 - + Q~10: STRONG NON-LINEAR COUPLING
 - + Q≥20: BURN CONTROL & IGNITION

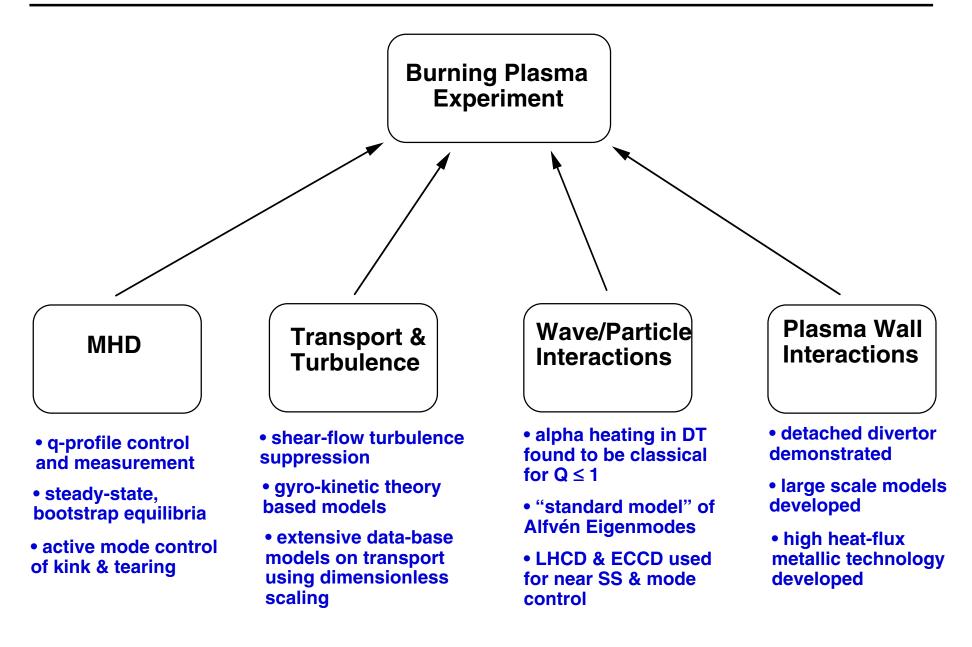
FUSION "SELF-HEATING" POWER BALANCE


FUSION POWER DENSITY: $p_f = R \varepsilon_f = \frac{1}{4} n^2 \langle \sigma v \rangle \varepsilon_f$ for $n_D = n_T = \frac{1}{2} n$

TOTAL THERMAL ENERGY
$$W = \int \left\{ \frac{3}{2} nT_i + \frac{3}{2} nT_e \right\} d^3x = 3 nTV$$

IN FUSION FUEL,

DEFINE "ENERGY CONFINEMENT TIME", $\tau_{E} \equiv \frac{W}{P_{loss}}$


274-01/rs

THERE ARE TWO TYPES OF BURNING PLASMA ISSUES...

- GETTING & STAYING THERE:
 - + DENSITY, TEMPERATURE, AND τ_{E} REQUIRED FOR $Q \ge 5$
 - + MHD STABILITY AT REQUIRED PRESSURE FOR $Q \ge 5$
 - + PLASMA EQUILIBRIUM SUSTAINMENT ($\tau > \tau_{skin}$)
 - + POWER, FUELING, & REACTION PRODUCT CONTROL

Major Advances & Discoveries of 90's Are Foundation for ITER Burning Plasma Experiment

THERE ARE TWO TYPES OF BURNING PLASMA ISSUES...

- GETTING & STAYING THERE:
 - + DENSITY, TEMPERATURE, AND τ_{E} REQUIRED FOR $Q \ge 5$
 - + MHD STABILITY AT REQUIRED PRESSURE FOR $Q \ge 5$
 - + PLASMA EQUILIBRIUM SUSTAINMENT ($\tau > \tau_{skin}$)
 - + POWER, FUELING, & REACTION PRODUCT CONTROL
- NEW SCIENCE PHENOMENA TO BE EXPLORED
 - + $Q \ge 5$: ALPHA EFFECTS ON STABILITY & TURBULENCE
 - + Q ≥ 10: STRONG, NON-LINEAR COUPLING BETWEEN ALPHAS, PRESSURE DRIVEN CURRENT, TURBULENT TRANSPORT, MHD STABILITY, & BOUNDARY-PLASMA
 - + Q ≥ 20: STABILITY, CONTROL, AND PROPAGATION OF THE FUSION BURN AND FUSION IGNITION TRANSIENT PHENOMENA

BURNING PLASMA IS A NEW REGIME: FUNDAMENTALLY DIFFERENT PHYSICS

New Elements in a Burning Plasmas:

SELF-HEATED SIGNIFICANT ISOTROPIC ENERGETIC BY FUSION ALPHAS POPULATION OF 3.5 MEV ALPHAS

LARGER DEVICE SCALE SIZE

PLASMA IS NOW AN **EXOTHERMIC** MEDIUM & HIGHLY NON-LINEAR

COMBUSTION SCIENCE \neq LOCALLY HEATED GAS DYNAMICS

FISSION REACTOR FUEL PHYSICS \neq RESISTIVELY HEATED FUEL BUNDLES

⇒OPPORTUNITY FOR UNEXPECTED DISCOVERY IS VERY HIGH⊂

Snowmass: ITER Physics Interests

- Exploration of alpha particle-driven instabilities in a reactorrelevant range of temperatures.
- Capability to address the science of self-heated plasmas in reactor-relevant regimes of small ρ^* (many Larmor orbits) and high β_N (plasma pressure), and with the capability of full non-inductive current drive sustained in near steady state conditions.
- Exploration of high self-driven current regimes with a flexible array of heating, current drive, and rotational drive systems.
- Strongly-coupled physics issues of equilibrium, stability, transport, wave-particle interactions, fast ion physics, and boundary physics in the regime of dominant self-heating.
- Investigation of temperature control and removal of helium ash and impurities with strong exhaust pumping.

Important Physical Properties of $\alpha\text{-}\text{Heating}$

- FOR Q ~ 10: $nT\tau_E \sim 2 \times 10^{21} \text{ m}^{-3} \text{ keV s}$ for T ~ 10 keV
 - + WHEN NON-IDEAL EFFECTS (PROFILES, HE ACCUMULATION, IMPURITIES SOMEWHAT LARGER VALUE ~ $3 \times 10^{21} \text{ m}^{-3} \text{ keV s}$
- FOR TOKAMAK "TYPICAL" PARAMETERS AT Q ~ 10 n ~ 2 x 10^{20} m⁻³ T ~ 10 keV τ_E ~ 1.5 s

Important Physical Properties of α -heating

- FOR Q ~ 10: $nT\tau_E \sim 2 \times 10^{21} \text{ m}^{-3} \text{ keV s}$ for T ~ 10 keV
 - + WHEN NON-IDEAL EFFECTS (PROFILES, HE ACCUMULATION, IMPURITIES SOMEWHAT LARGER VALUE ~ 3 x 10²¹ m⁻³ keV s
- FOR TOKAMAK "TYPICAL" PARAMETERS AT Q ~ 10 n ~ 2 x 10^{20} m⁻³ T ~ 10 keV τ_E ~ 1.5 s
- BASIC PARAMETERS OF DT PLASMA AND α $V_{Ti} \sim 6 \times 10^5$ m/s $V_{\alpha} \sim 1.3 \times 10^7$ m/s $V_{Te} \sim 6 \times 10^7$ m/s Note at B ~ 5 T: $V_{Alfvén} \sim 5 \times 10^6$ m/s $< V_{\alpha}$

Important Physical Properties of $\alpha\text{-}\text{Heating}$

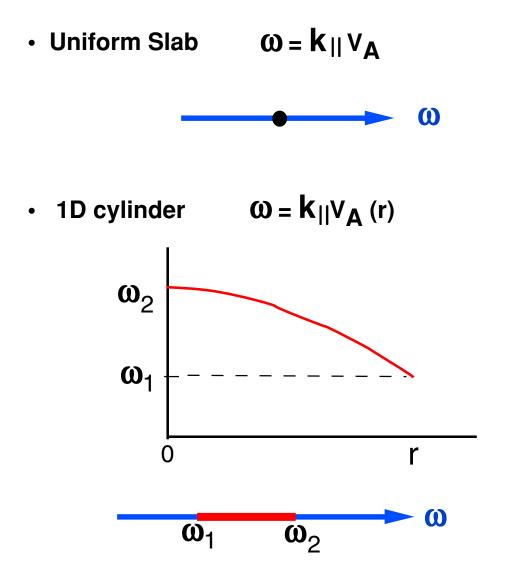
- FOR Q ~ 10: $nT\tau_E \sim 2 \times 10^{21} \text{ m}^{-3} \text{ keV s}$ for T ~ 10 keV
 - + WHEN NON-IDEAL EFFECTS (PROFILES, HE ACCUMULATION, IMPURITIES SOMEWHAT LARGER VALUE ~ $3 \times 10^{21} \text{ m}^{-3} \text{ keV s}$
- FOR TOKAMAK "TYPICAL" PARAMETERS AT Q ~ 10 n ~ 2 x 10²⁰ m⁻³ T ~ 10 keV τ_E ~ 1.5 s
- BASIC PARAMETERS OF DT PLASMA AND α $V_{Ti} \sim 6 \times 10^5$ m/s $V_{\alpha} \sim 1.3 \times 10^7$ m/s $V_{Te} \sim 6 \times 10^7$ m/s Note at B ~ 5 T: $V_{Alfvén} \sim 5 \times 10^6$ m/s $< V_{\alpha}$
- CAN IMMEDIATELY DEDUCE:
 - 1) α -particles may have strong resonant interaction with Alfven waves.

2) $T_i \sim T_e \text{ since } V_{\alpha} >> V_{Ti} \text{ and } m_{\alpha} >> m_e \text{ the } \alpha \text{-particles slow}$ PREDOMINANTLY ON ELECTRONS.

Q ~ 5: α-effects on TAE stability

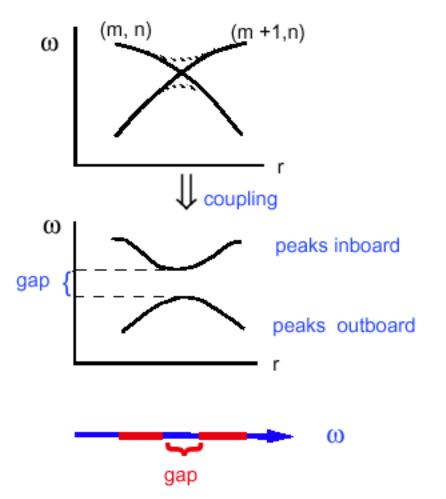
ALPHA PARTICLE EFFECTS: KEY DIMENSIONSLESS PARAMETRS

•Three dimensionless parameters will characterize the physics of alpha-particle-driven instabilities:


- Alfven Mach Number: $V_{CV}/V_A(0)$
- Number of Alpha Lamor Radii (inverse): ρ_{α}/a
- Maximum Alpha Pressure Gradient (scaled): Max R $abla eta_{lpha}$

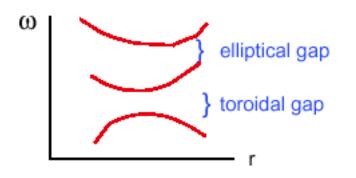
Range of Interest (e.g. ARIES-RS/AT)		ITER	JET	
V _{C/} /V _A (0)	≈ 2.0	1.9	1.6–1.9	
ρ _α /a	≈ 0.02	0.016	~0.1	
Max $\mathbf{R}\nabla\beta_{0}$	α 0.03–0.15	0.05	0.02-0.037	

• Uniform Slab $\omega = \mathbf{k}_{||} \mathbf{v}_{\mathbf{A}}$

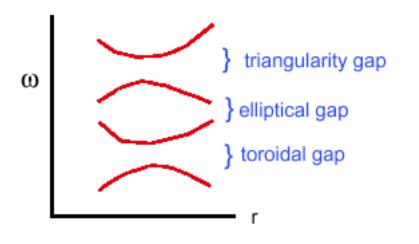


Geometric Effects on Alfven Waves

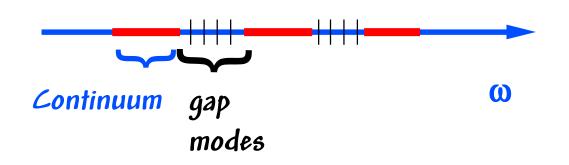
• Continuous spectrum, shear Alfvén resonance


Add 2D toroidal effects:

• Periodic boundary conditions for toroidal mode number, n, and poloidal mode number, m

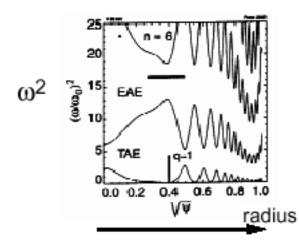

 m and m+1 are coupled and a "gap" is opened in the otherwise continuous spectrum

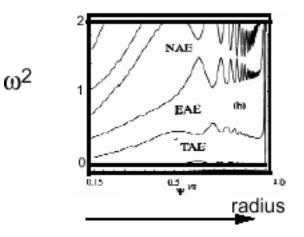
Add elliptical cross-section effects:


 m and m+2 are now coupled and an elliptical "gap" is opened in the continuous spectrum

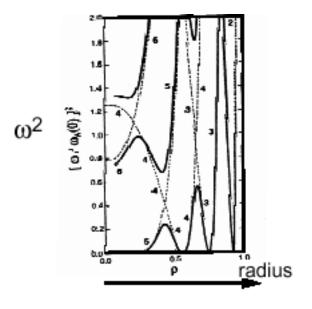
Add triangularity cross-section effects:

 m and m+3 are now coupled and an triangularity "gap" is opened in the continuous spectrum


Discrete Modes Appear in Gaps in the Continuum:


- Alfvén wave continuum is strongly damped.
- TAE gap-modes are less damped: free energy from ∇p_α tapped by wave/particle resonance drive from α-particles may destabilize these modes.

BASIC ALFVEN EIGENMODE PHYSICS EXTENDS TO RANGE OF TOROIDAL CONFIGURATIONS


Tokamak:

Spherical Torus:

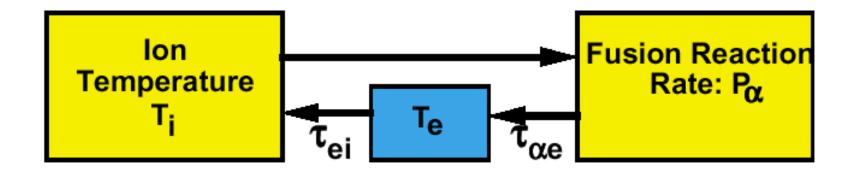
Stellarator:

 Details of spectra differ but underlying physics and modeling tools are common.

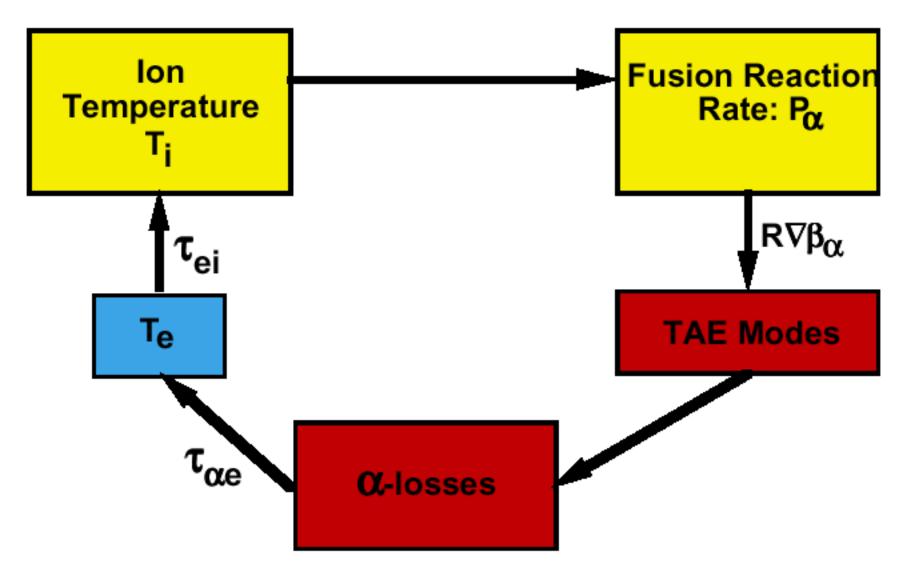
New Alpha Effects Expected on Scale of Burning Plasma

- Present experiments show alpha transport due to only a few global modes.
- Smaller value of ρ_α/<a> in a Burning Plasma may lead to a "sea" of resonantly overlapping unstable modes & possible large alpha transport.

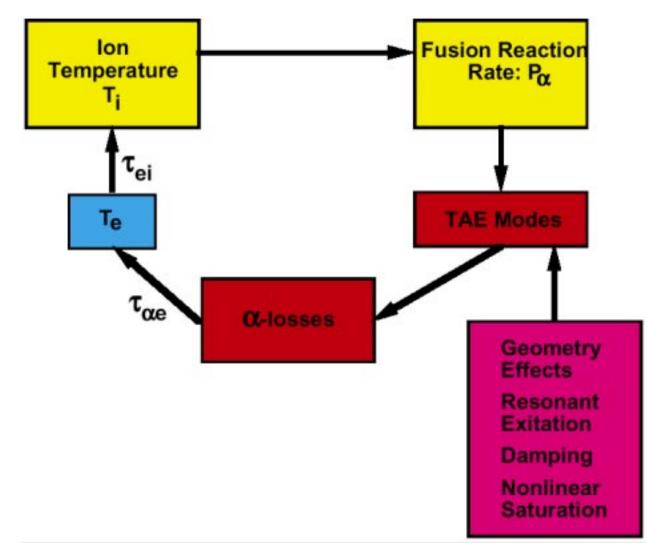
New Alpha Effects Expected on Scale of Burning Plasma

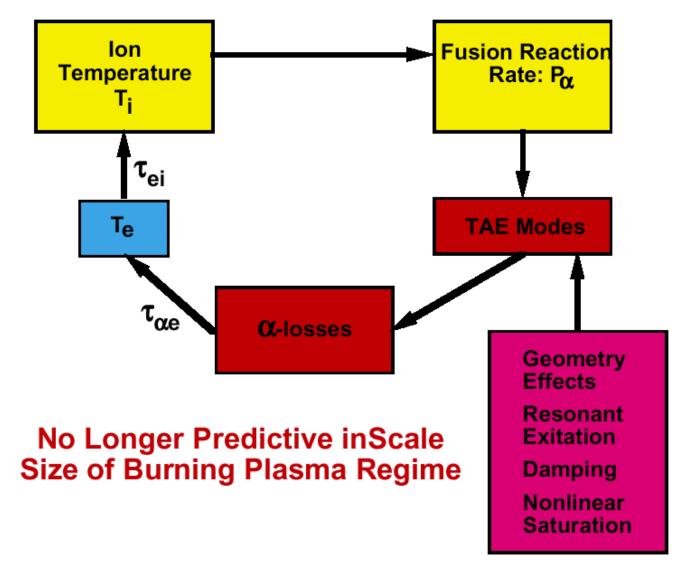

- Present experiments show alpha transport due to only a few global modes.
- Smaller value of ρ_α/<a> in a Burning Plasma should lead to a "sea" of resonantly overlapping unstable modes & possible large alpha transport.
- Reliable simulations not possible with our 'standard model'...needs experimental information in new regime.

Q ~ 10: Strong Non-Linear Coupling & Steady-State High β Operation


Fusion Reactors and Power Plants Design Studies

Parameter	ITER-ss	PULSAR-I	PPCS-C	ARIES-RS	A-SSTR2	STPP
B _φ (T)	5.1	6.7	7.5	8.0	11	1.8
I _p (MA)	9	14.2	6.4	11.3	12	31
R, a (m)	6.35, 1.85	9.2, 2.3	7.5, 2.5	5.52, 1.38	6.2, 1.5	3.42, 2.44
A	3.4	4.0	3.0	4.0	4.1	1.4
V (m ³)	800	1540	1750	350	470	1081
P _{fus} (MW)	360	<mark>2030</mark>	3400	2170	4000	<mark>3300</mark>
P _{aux} (MW)	72	0	112	81	85	76
Mode	ss	2.5 hr	ss	ss	ss	ss
H _{98(y,2)}	1.6	1.4	1.3	1.4	1.6	1.3
β _N	3.1	3.0	4.0	5.0	4.0	8.2
n _e /n _{GW}	0.81	1.4	1.5	1.1	1.2	0.82


BASIC COUPLING OF FUSION ALPHA HEATING:


ADD ALPHA DRIVEN TAE MODES:

ADD COMPLEX PHYSICS OF ALPHA DRIVEN TAE MODES:

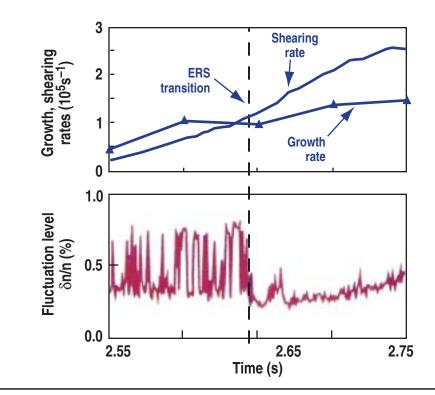
ADD COMPLEX PHYSICS OF ALPHA DRIVEN TAE MODES:

MAJOR DISCOVERY OF THE 1990's: SHEARED FLOW CAUSES TRANSPORT SUPPRESSION

Gyrokinetic Theory

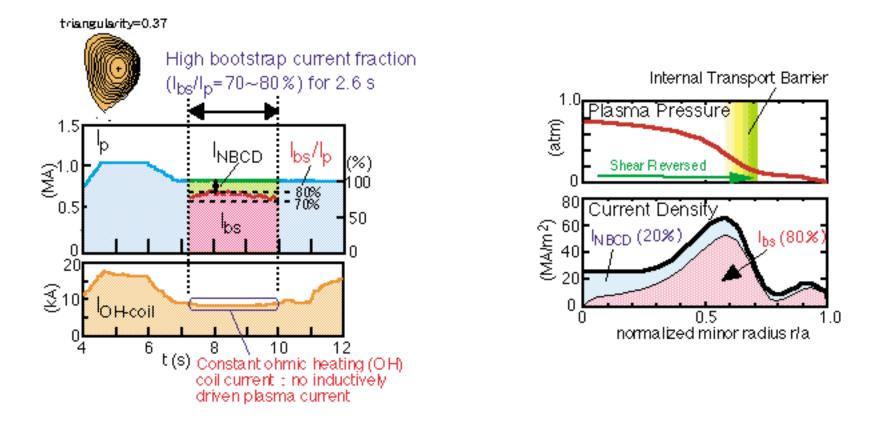
 Simulations show turbulent eddies disrupted by strongly sheared plasma flow

With

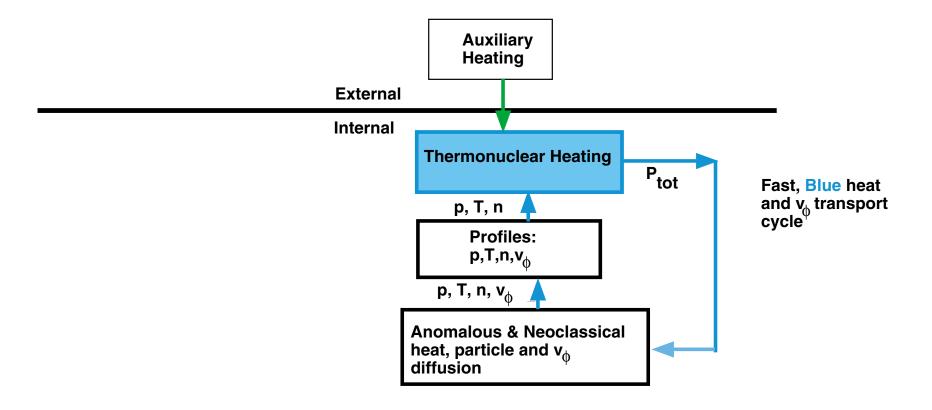

Flow

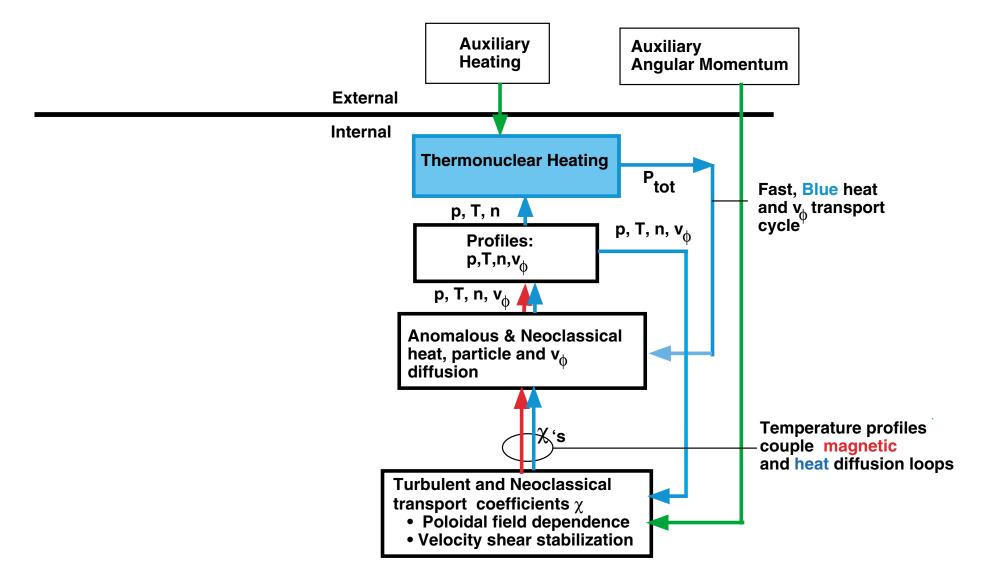
Without Flow

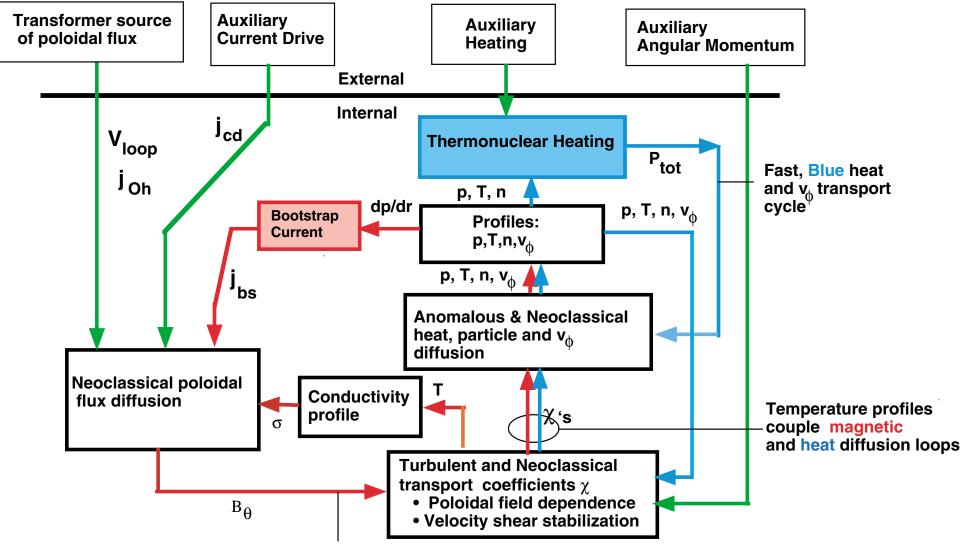
y


Experiment

• Turbulent fluctuations are suppressed when shearing rate exceeds growth rate of most unstable mode

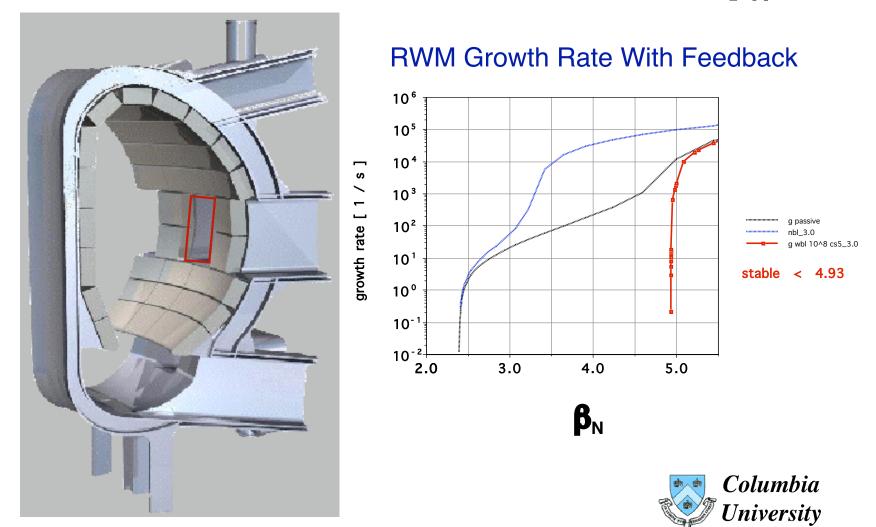

Verified Prediction of Biglari, Diamond, Terry, Phys. Fluids B 2 1 (1990)


Combination of Turbulence Suppression & Bootstrap Current Leads to Steady-State Advanced Tokamak



 Data from JT-60U shows sustained transport barrier and 100% non-inductive current drive

Thermonuclear Heating



Slow, red magnetic flux diffusion loop

MHD STABILITY IN ITER BURNING PLASMA

- REQUIREMENT FOR HIGH $\beta_N > 3$ SET BY TWO CRITICAL EFFECTS:
 - + HIGH FUSION POWER DENSITY FOR SMALL SIZE/LOWER COST
 - + HIGH BOOTSTRAP CURRENT FRACTION FOR EFFICIENT CURRENT DRIVE IN STEADY-STATE OPERATION
- **TWO PRINCIPAL** β -LIMITING **MHD MODES**:
 - + NEOCLASSICAL TEARING MODES STABILIZED BY LOCAL ECCD AND/OR CURRENT PROFILE CONTROL
 - + RESISTIVE WALL MODES STABILIZED BY PLASMA ROTATION AND/OR ACTIVE FEEDBACK CONTROL

New Results Driving AT Interests in ITER: Internal RWM Control Coils May Allow $\beta_N \sim 5$

SUMMARY OF US SCIENCE INTERESTS IN ITER

- Exploration of alpha particle-driven instabilities.
- Self-heated plasmas in reactor-relevant regimes of small ρ^* (many Larmor orbits) and high $\beta_{\sf N}$ (plasma pressure), sustained in near steady state conditions.
- Exploration of high self-driven current regimes.
- Strongly-coupled physics issues.
- Temperature control and strong exhaust pumping.

SUMMARY OF US SCIENCE INTERESTS IN ITER

- Exploration of alpha particle-driven instabilities.
- Self-heated plasmas in reactor-relevant regimes of small ρ^* (many Larmor orbits) and high $\beta_{\sf N}$ (plasma pressure), sustained in near steady state conditions.
- Exploration of high self-driven current regimes.
- Strongly-coupled physics issues.
- Temperature control and strong exhaust pumping.

Flexibility of ITER to explore advances we will make in fusion science, including diagnostic systems essential for understanding.