Perspectives on Fusion Electric Power Plants

Farrokh Najmabadi University of California, San Diego, La Jolla, CA

FPA Annual Meeting December 13, 2004 Washington, DC

Electronic copy: http://aries.uscd/edu/najmabadi/ ARIES Web Site: http://aries.ucsd.edu/ARIES/ Evolution of the Vision of Fusion Power Plants (last 15 years) <u>1. Plasma Physics</u>

A dramatic change occurred in 1990: Introduction of Advanced Tokamak

- Our vision of a fusion system in 1980s was a large pulsed device.
 - ✓ Non-inductive current drive is inefficient.
- Some important achievements in 1980s:
 - ✓ Experimental demonstration of bootstrap current;
 - \checkmark Development of ideal MHD codes that agreed with experimental results.
 - ✓ Development of stead-state power plant concepts (ARIES-I and SSTR) based on the trade-off of bootstrap current fraction and plasma β
- ARIES-I was still too large and too expensive: Utilize advance technologies:
 - \checkmark Utilized high field magnets to improve the power density
 - ✓ Introduced SiC composite to achieve excellent safety & environmental characteristics.

Directions for Improvement

Reverse Shear Plasmas Lead to Attractive Tokamak Power Plants

First Stability Regime

- Does Not need wall stabilization (Resistive-wall modes)
- ► Limited bootstrap current fraction (< 65%), limited β_N = 3.2 and β =2%,
- > **ARIES-I:** Optimizes at high A and low I and high magnetic field.

Reverse Shear Regime

- Requires wall stabilization (Resistive-wall modes)
- Excellent match between bootstrap & equilibrium current profile at high β .
- Internal transport barrier
- ➤ ARIES-RS (medium extrapolation): $β_N = 4.8$, β = 5%, $P_{cd} = 81$ MW (achieves ~5 MW/m² peak wall loading.)
- ARIES-AT (aggressive extrapolation): $\beta_N = 5.4$, $\beta = 9\%$, $P_{cd} = 36$ MW (high β is used to reduce peak field at magnet)

Evolution of ARIES Designs

	<u>1st Stability,</u>	<u>High-Field</u>	<u>Reverse Shear</u> <u>Option</u>	
	<u>Nb₃Sn Tech.</u>	<u>Option</u>		
	ARIES-I'	ARIES-I	ARIES-RS	ARIES-AT
Major radius (m)	8.0	6.75	5.5	5.2
β (β _N)	2% (2.9)	2% (3.0)	5% (4.8)	9.2% (5.4)
Peak field (T)	16	19	16	11.5
Avg. Wall Load (MW/m ²)	1.5	2.5	4	3.3
Current-driver power (MW)	237	202	81	36
Recirculating Power Fraction	0.29	0.28	0.17	0.14
Thermal efficiency	0.46	0.49	0.46	0.59
Cost of Electricity (c/kWh)	10	8.2	7.5	5

Approaching COE insensitive of power density

Approaching COE insensitive of current drive

ARIES designs Correspond to Experimental Progress in a Burning Plasma Experiment

Evolution of the Vision of Fusion Power Plants 2. Fusion "Technologies"

ARIES-I Introduced SiC Composites as A High-Performance Structural Material for Fusion

- Excellent safety & environmental characteristics (very low activation and very low afterheat).
- ➢ High performance due to high strength at high temperatures (>1000°C).
- Large world-wide program in SiC:
 - * New SiC composite fibers with proper stoichiometry and small O content.
 - * New manufacturing techniques based on polymer infiltration or CVI result in much improved performance and cheaper components.
 - Recent results show composite thermal conductivity (under irradiation) close to 15 W/mK which was used for ARIES-I.

Continuity of ARIES research has led to the progressive refinement of research

- SiC composite with solid breeders
- Advanced Rankine cycle

Starlite & ARIES-RS:

- Li-cooled vanadium
- Insulating coating

ARIES-ST:

- Dual-cooled ferritic steel with SiC inserts
- Advanced Brayton Cycle at $\geq 650 \text{ }^{\circ}\text{C}$

ARIES-AT:

- LiPb-cooled SiC composite
- Advanced Brayton cycle with $\eta = 59\%$

Many issues with solid breeders; Rankine cycle efficiency saturated at high temperature

Max. coolant temperature limited by maximum structure temperature

High efficiency with Brayton cycle at high temperature

Advanced Brayton Cycle Parameters Based on Present or Near Term Technology Evolved with Expert Input from General Atomics^{*}

HΧ

Brayton Cycle He Inlet and Outlet Temperatures as a Function of Required Cycle Efficiency

ARIES-ST Features a High-Performance Ferritic Steel Blanket

- Typically, the coolant outlet temperature is limited to the max. operating temperature of structural material (550°C for ferritic steels).
- By using a coolant/breeder
 (LiPb), cooling the structure
 by He gas, and SiC insulators,
 a coolant outlet temperature
 of 700°C is achieved for
 ARIES-ST leading to 45%
 thermal conversion efficiency.

OB Blanket thickness	1.35 m
OB Shield thickness	0.42 m
Overall TBR	1.1

ARIES-AT²: SiC Composite Blankets

- Simple, low pressure design with SiC structure and LiPb coolant and breeder.
- Simple manufacturing technique.
- ➢ Very low afterheat.
- ➢ Class C waste by a wide margin.
- LiPb-cooled SiC composite divertor is capable of 5 MW/m² of heat load.
- Innovative design leads to high LiPb outlet temperature (~1,100°C) while keeping SiC structure temperature below 1,000°C leading to a high thermal efficiency of ~ 60%.

Outboard blanket & first wall

Innovative Design Results in a LiPb Outlet Temperature of 1,100°C While Keeping SiC Temperature Below 1,000°C

Evolution of the Vision of Fusion Power Plants <u>**3. Attractiveness**</u> **Our Vision of Magnetic Fusion Power Systems Has Improved Dramatically in the Last Decade, and Is Directly Tied to Advances in Fusion Science & Technology**

Major radius (m)

Estimated Cost of Electricity (c/kWh)

Radioactivity Levels in Fusion Power Plants Are Very Low and Decay Rapidly after Shutdown

- SiC composites lead to a very low activation and afterheat.
- All components of ARIES-AT qualify for Class-C disposal under NRC and Fetter Limits. 90% of components qualify for Class-A waste.

Evolution of the Vision of Fusion Power Plants 4. Critical R&D Issues

Advances in plasma physics has led to a dramatic improvement in our vision of fusion systems

- Attractive visions for tokamak exist.
- The main question is to what extent the advanced tokamak modes can be achieved in a <u>burning plasma</u>:
 - ✓ What is the achievable β_N (macroscopic stability)
 - ✓ Can the necessary pressure profiles realized in the presence of strong a heating (microturbulence & transport)
 - ✓ What is the best regime of operation for the divertor (plasma-material interaction).

> Attractive visions for ST and stellarator configurations also exist

Fusion "technologies" are the pace setting element of fusion development

- Pace of "Technology" research has been considerably slower than progress in plasma physics.
- Most of technology research has been focused on ITER (real technology).
- R&D in fusion power technologies (fusion engineering sciences) have been limited:
 - ✓ Experimental data is mainly from Europe, but program focus is different.
 - ✓ We need fresh blood, small programs to test concepts, develop data bases, ...