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Topics

• Mission and Design

• Completing Construction.

• Starting Experimental Research.

Community Planning of NCSX Experimental
Campaigns Begins Now
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Compact Stellarator Benefits for Magnetic Fusion

Compact Stellarators have additional
benefits
• Magnetic quasi-symmetry. In NCSX:

– Quasi-axisymmetric configuration with
effective ripple <1.5%.

– Low flow damping, tokamak-like orbits
⇒ enhanced confinement

– Makes full use of tokamak advances,
allowing rapid and economical development.

• Lower aspect ratio than typical stellarators.
– 4.4 in NCSX vs. ~11 in W7-X. 10
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Stellarators solve critical problems.
• Steady state without current drive.
• No disruptions: stable without feedback control or rotation drive.
• Unique flexibility to resolve 3D plasma physics issues.

NCSX has low effective ripple.
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NCSX Plasma

Stellarator Benefits Are Due to its 3D Geometry

• Stellarators create confining magnetic
configuration with magnets alone.

– Robust mode of operation, simple control.

• Compact stellarators take advantage of
3D shaping flexibility to design for
additional attractive properties.

– Compactness,  good confinement, high-β
stability, etc.

• The shape can be varied.

– Provides flexibility for physics tests..

3D geometry produces benefits and
costs. We need to quantify both.
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NCSX Mission: Physics of Compact Stellarators

Acquire the physics data needed to assess the attractiveness of
compact stellarators; advance understanding of 3D fusion science.

Understand…
• Beta limits and limiting mechanisms.
• Effect of 3D magnetic fields on disruptions
• Reduction of neoclassical transport by QA design.
• Confinement scaling; reduction of anomalous

transport.
• Equilibrium islands and neoclassical tearing-mode

stabilization.
• Power and particle exhaust compatibility w/good

core performance.
• Alfvénic mode stability in reversed shear compact

stellarator.

Demonstrate…
• Conditions for high-beta, disruption-free operation.
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NCSX Physics Design
Configuration was optimized to realize target physics properties.
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Plasma Cross Sections Configuration Properties
• Low R/〈a〉 (4.4); 3 periods.

• Quasi-axisymmetric w/ low ripple.

• Stable at β=4.1% to specific MHD
instabilities.

• Reverse shear q-profile.

• 25% of transform from bootstrap.

• Good magnetic surfaces at high β.

• Constrained by engineering
feasibility metrics.

– coil-coil spacing
– min. bend radius
– tangential NBI access
– coil-plasma spacing.



7

NCSX Design Satisfies Physics & Engineering Criteria

• 18 modular coils (3 shapes)
– Also TF, PF, and helical trim coils.

• Massively parallel computer optimization
used to target required properties.
– Over 500,000 designs analyzed.

• Provides required physics properties:
– Low aspect ratio.

– Stable at high beta.

– Quasi-axisymmetric.

– Flexible.

• Satisfies feasibility metrics :
– Coil-coil spacing & NBI access

– Coil bend radius

– Coil-plasma spacing.
NCSX Plasma

and Modular Coils



8

 
Also
• Can externally control iota.
• Can increase ripple by ~10x, preserving stability.
• Can lower theoretical β-limit to 1%.
• Can cover wide operating space in β (to at least 6%), IP, profile shapes.

NCSX Coils: Flexibility to Vary Physics Properties
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• Magnet system has 4 coil sets
– Modular, TF, PF, trim.

Shear controlled by varying plasma shape
β=4.2%, full current, fixed profiles.
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NCSX Parameters and Machine Design

coils cooled to cryogenic temperatures,
vacuum vessel at room temperature.

Stellarator
Major radius:  1.4 m

Performance:

Magnetic Field Strength (B)
@ 0.2 s pulse: 2.0 T
@ 1.7 s pulse: 1.2 T

Vac. base pressure: 2×10–8 torr

Vessel bakeable to 350 C.

Plasma Heating planned
NBI: 6 MW (tangential)

ICH: 6 MW (high-field launch)

ECH: 3 MW
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Vacuum Vessel Manufacture is Complete!
Major Tool and Machine, Inc.

 

• Good access (99 ports).
• Space inside for first wall & divertor.
• Inconel for low field errors.
• Bakeable to 350 C.

All 3 Segments at PPPL

1
2

3
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Modular Coils Are in Production

Winding Forms
Energy Industries of Ohio, Inc.

• All 18 have completed foundry ops.
• 8 have completed machining and shipped

Winding

Winding form
(one per coil).

Coil Winding (PPPL)
6 have been wound

Completed Coil
4 completed.
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NCSX Construction Summary

Status
• Vacuum vessel manufacture: complete.
• Modular coils(18): 8 MCWF delivered, 4 coils complete.
• TF coils (18): contractor preparing tooling to wind coils.

Schedule Highlights
• FY-07: component fabrication, sub-assembly activities.
• FY-08: Assembly of field-periods (3), test cell

preparations
• FY-09: Final assembly, testing, First Plasma.

Construction project is over 60% complete and on
schedule for First Plasma in July, 2009.
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First Experimental Campaigns Will Be in FY09 & 11

Phase / Research Goa l s  

1.  Stellarator Acceptance Testing  
• Verify construction accuracy 
•  First Plasma 

2.  Magnetic Configuration Studies 
• Vacuum flux surface documentation. 
•  Magnetic configuration control w/ coils. 

3./4. Initial Heating Experiments 
•  Explore plasma operating space 
•  Global confinement, stability, & operating limits; dependence on 3D shape 
• Confinement vs. 3D shape 
• Stability at moderate  vs. 3D shape 

• Local transport, effects of quasi-symmetry 
• SOL characterization 
•  Transport barriers & enhanced confinement. 

 

NCSX & NSTX will operate in alternate years starting in FY10.

FY-05 FY-06 FY-07 FY-08 FY-09

Fabrication Project
Phase 1 & 2 Equipment

2 3 / 41

FY-10 FY-11 FY-12

1st Plasma

Phase 3 / 4 Equipment

Phase 5 Equipment



14

Community Planning for NCSX Experimental
Campaigns Begins Now

• Research program will be a national / international collaboration.

– Led by PPPL-ORNL partnership.

• Program Advisory Committee meets Nov. 9-10.

– Advise on priorities and preparation plans.

• First NCSX Research Forum, Dec. 7-8 at PPPL (immediately after

NSTX forum).

– All invited. Remote participation will be available.

– Learn about NCSX and collaboration opportunities.

– Community input on priorities and planning.

• First call for diagnostic collaborations- FY-08

– For funding in FY-09.
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Stellarators Provide Unique
Opportunities for Fusion Science

Understanding 3D plasma physics important to all of MFE science
• Rotational transform sources (int., ext.): effect on stability, disruptions?
• 3D plasma shaping: stabilize without conducting walls or feedback?
• Magnetic quasi-symmetry: tokamak-like fundamental transport properties?
• Effects of 3-D fast ion resonant modes & Alfvénic modes in 3-D?
• 3D divertors: effects on boundary plasma, plasma-material interactions?

Answering critical fusion science questions, e.g.
• How does magnetic field structure impact plasma confinement?

– plasma shaping? internal structure? self-generated currents?
• How much external control vs. self-organization will a fusion plasma

require?

Role in burning plasma research
• Provide tools, database, strategies for understanding 3D effects
• Contribute to ITER experimental planning.
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Summary

• The NCSX project is implementing an optimized 3D system to
test compact stellarator benefits.

– Low-R/〈a〉, high-beta, quasi-axisymmetric stellarator plasma.
– Flexible coil set and vacuum vessel
– Component geometries determined by physics optimization.

• Construction is on schedule for July, 2009 completion.
– Vacuum vessel and 4 modular coils completed.
– Assembly activities have started.

• FY09-11 experimental campaigns are being planned.
– First NCSX Research Forum will be Dec. 7-8. All invited.


