

National Compact Stellarator Experiment

Status and Plans

Hutch Neilson for the NCSX Team

Princeton Plasma Physics Laboratory Oak Ridge National Laboratory

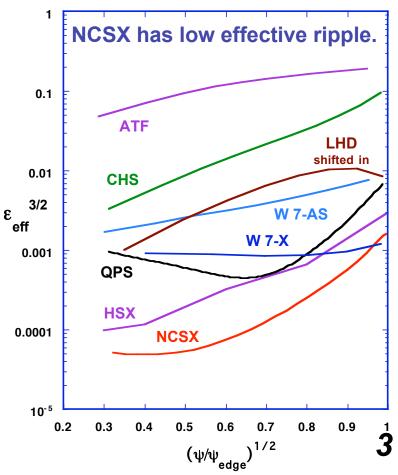
Fusion Power Associates Annual Symposium Washington, DC September 28, 2006

Topics

- Mission and Design
- Completing Construction.
- Starting Experimental Research.

Community Planning of NCSX Experimental Campaigns Begins Now

Compact Stellarator Benefits for Magnetic Fusion

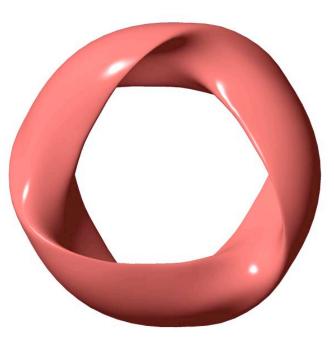

National Compact Stellarator Experiment

Stellarators solve critical problems.

- Steady state without current drive.
- No disruptions: stable without feedback control or rotation drive.
- Unique flexibility to resolve 3D plasma physics issues.

Compact Stellarators have additional benefits

- Magnetic quasi-symmetry. In NCSX:
 - Quasi-axisymmetric configuration with effective ripple <1.5%.
 - Low flow damping, tokamak-like orbits
 ⇒ enhanced confinement
 - Makes full use of tokamak advances, allowing rapid and economical development.
- Lower aspect ratio than typical stellarators.
 - 4.4 in NCSX vs. ~11 in W7-X.



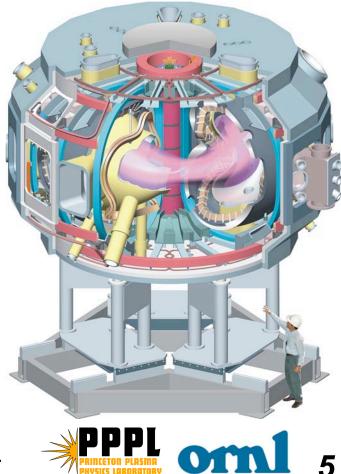
Stellarator Benefits Are Due to its 3D Geometry

- Stellarators create confining magnetic configuration with magnets alone.
 - Robust mode of operation, simple control.
- Compact stellarators take advantage of 3D shaping flexibility to design for additional attractive properties.
 - Compactness, good confinement, high-β stability, etc.
- The shape can be varied.
 - Provides flexibility for physics tests..

3D geometry produces benefits and costs. We need to quantify both.

NCSX Mission: Physics of Compact Stellarators

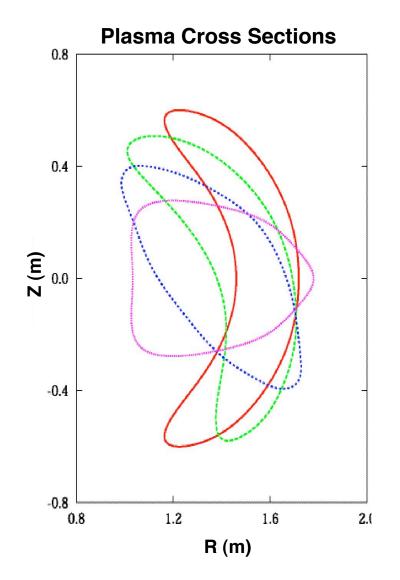
Acquire the physics data needed to assess the attractiveness of compact stellarators; advance understanding of 3D fusion science.


Understand...

NCSY

- Beta limits and limiting mechanisms.
- Effect of 3D magnetic fields on disruptions
- Reduction of neoclassical transport by QA design.
- Confinement scaling; reduction of anomalous transport.
- Equilibrium islands and neoclassical tearing-mode stabilization.
- Power and particle exhaust compatibility w/good core performance.
- Alfvénic mode stability in reversed shear compact stellarator.

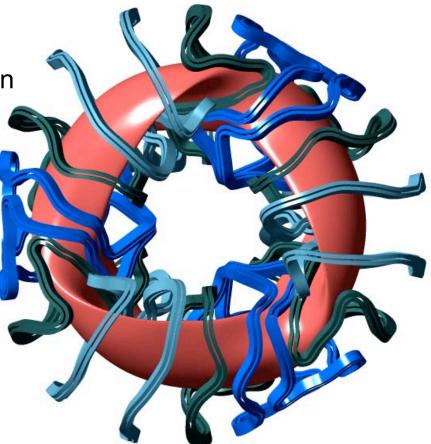
Demonstrate...


• Conditions for high-beta, disruption-free operation.

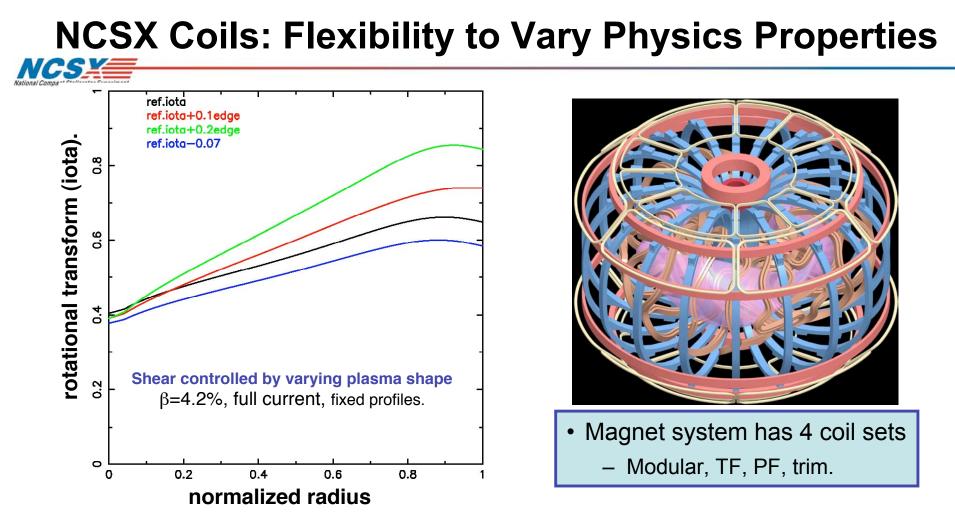
NCSX Physics Design

NCSY National Compact Stellarator Experiment

Configuration was optimized to realize target physics properties.


Configuration Properties

- Low R/ $\langle a \rangle$ (4.4); 3 periods.
- Quasi-axisymmetric w/ low ripple.
- Stable at β =4.1% to specific MHD instabilities.
- Reverse shear q-profile.
- 25% of transform from bootstrap.
- Good magnetic surfaces at high β .
- Constrained by engineering feasibility metrics.
 - coil-coil spacing
 - min. bend radius
 - tangential NBI access
 - coil-plasma spacing.


NCSX Design Satisfies Physics & Engineering Criteria

NCS National Compact Stellarator Experiment

- 18 modular coils (3 shapes)
 - Also TF, PF, and helical trim coils.
- Massively parallel computer optimization used to target required properties.
 - Over 500,000 designs analyzed.
- Provides required physics properties:
 - Low aspect ratio.
 - Stable at high beta.
 - Quasi-axisymmetric.
 - Flexible.
- Satisfies feasibility metrics :
 - Coil-coil spacing & NBI access
 - Coil bend radius
 - Coil-plasma spacing.

NCSX Plasma and Modular Coils

Also

- · Can externally control iota.
- Can increase ripple by ~10x, preserving stability.
- Can lower theoretical β -limit to 1%.
- Can cover wide operating space in β (to at least 6%), I_P, profile shapes.

NCSX Parameters and Machine Design

Stellarator

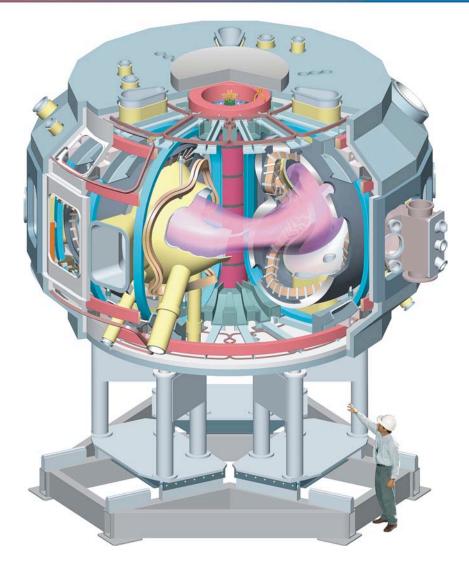
Major radius: 1.4 m

Performance:

Magnetic Field Strength (B)

@ 0.2 s pulse: 2.0 T

@ 1.7 s pulse: 1.2 T


Vac. base pressure: 2×10^{-8} torr Vessel bakeable to 350 C.

Plasma Heating planned

NBI: 6 MW (tangential)

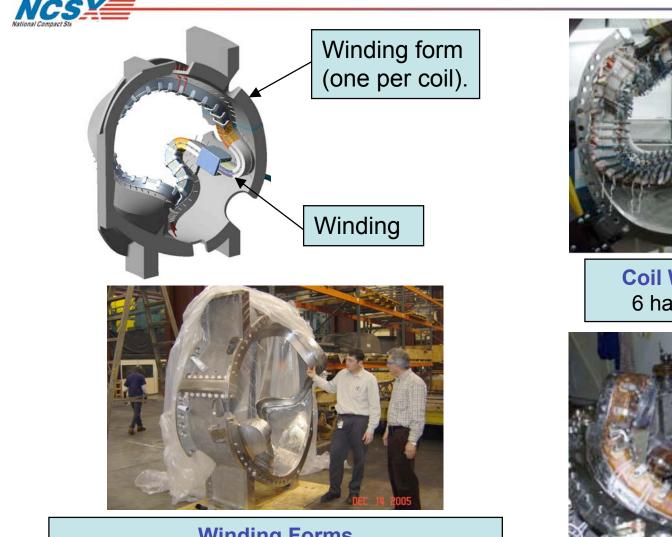
ICH: 6 MW (high-field launch)

ECH: 3 MW

coils cooled to cryogenic temperatures, vacuum vessel at room temperature.

Vacuum Vessel Manufacture is Complete!

Major Tool and Machine, Inc.



- Good access (99 ports).
- Space inside for first wall & divertor.
- Inconel for low field errors.
- Bakeable to 350 C.

All 3 Segments at PPPL

Modular Coils Are in Production

Winding Forms Energy Industries of Ohio, Inc.

- All 18 have completed foundry ops.
- 8 have completed machining and shipped

Coil Winding (PPPL) 6 have been wound

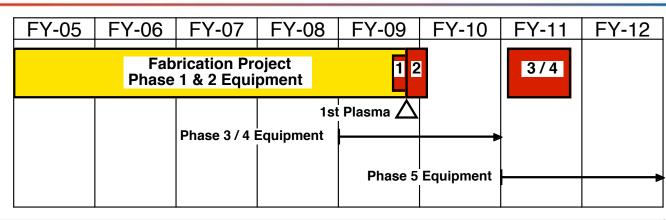
Completed Coil 4 completed.

NCSX Construction Summary

NCSY National Compact Stellarator Experiment

Status

- Vacuum vessel manufacture: complete.
- Modular coils(18): 8 MCWF delivered, 4 coils complete.
- TF coils (18): contractor preparing tooling to wind coils.


Schedule Highlights

- FY-07: component fabrication, sub-assembly activities.
- FY-08: Assembly of field-periods (3), test cell preparations
- FY-09: Final assembly, testing, First Plasma.

Construction project is over 60% complete and on schedule for First Plasma in July, 2009.

First Experimental Campaigns Will Be in FY09 & 11

Phase / Research Goals

1. Stellarator Acceptance Testing

- Verify construction accuracy
- First Plasma

2. Magnetic Configuration Studies

- Vacuum flux surface documentation.
- Magnetic configuration control w/ coils.

3./4. Initial Heating Experiments

- Explore plasma operating space
- Global confinement, stability, & operating limits; dependence on 3D shape
- Confinement vs. 3D shape
- Stability at moderate β vs. 3D shape
- · Local transport, effects of quasi-symmetry
- SOL characterization
- Transport barriers & enhanced confinement.

NCSX & NSTX will operate in alternate years starting in FY10.

Community Planning for NCSX Experimental Campaigns Begins Now

- Led by PPPL-ORNL partnership.
- Program Advisory Committee meets Nov. 9-10.
 - Advise on priorities and preparation plans.
- First NCSX Research Forum, Dec. 7-8 at PPPL (immediately after NSTX forum).
 - All invited. Remote participation will be available.
 - Learn about NCSX and collaboration opportunities.
 - Community input on priorities and planning.
- First call for diagnostic collaborations- FY-08
 - For funding in FY-09.

Stellarators Provide Unique Opportunities for Fusion Science

Understanding 3D plasma physics important to all of MFE science

- Rotational transform sources (int., ext.): effect on stability, disruptions?
- 3D plasma shaping: stabilize without conducting walls or feedback?
- Magnetic quasi-symmetry: tokamak-like fundamental transport properties?
- Effects of 3-D fast ion resonant modes & Alfvénic modes in 3-D?
- 3D divertors: effects on boundary plasma, plasma-material interactions?

Answering critical fusion science questions, e.g.

- How does magnetic field structure impact plasma confinement?
 - plasma shaping? internal structure? self-generated currents?
- How much external control *vs.* self-organization will a fusion plasma require?

Role in burning plasma research

- Provide tools, database, strategies for understanding 3D effects
- Contribute to ITER experimental planning.

Summary

- The NCSX project is implementing an optimized 3D system to test compact stellarator benefits.
 - Low-R/ $\langle a \rangle$, high-beta, quasi-axisymmetric stellarator plasma.
 - Flexible coil set and vacuum vessel
 - Component geometries determined by physics optimization.
- Construction is on schedule for July, 2009 completion.
 - Vacuum vessel and 4 modular coils completed.
 - Assembly activities have started.
- FY09-11 experimental campaigns are being planned.
 - First NCSX Research Forum will be Dec. 7-8. All invited.