

National Spherical Torus Experiment

College W&M **Colorado Sch** Mines Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL **PPPL** PSI **Princeton U** SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Masayuki Ono

For the NSTX Research Team

Fusion Power Associate Annual Meeting

September 27-28, 2006 Washington DC

Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo **JAERI** Hebrew U loffe Inst **RRC Kurchatov** Inst TRINITI **KBSI KAIST** ENEA, Frascati CEA. Cadarache **IPP, Jülich IPP**, Garching ASCR, Czech Rep

NSTX is a World Leading Low-Aspect-Ratio Spherical Tokamak Facility

Device Parameters R = 85 cma = 65 cm $\kappa = 1.7 - 3.0$ $\delta = 0.3 - 0.8$ $B_{T} = 5.5 \text{ kG}$ $I_{p} = 1.5 \text{ MA}$ $V_{p} = 14 \text{ m}^{3}$ $E_p \sim 430 \text{ kJ}$ $P_{NBI} = 7.4 \text{ MW}$ $P_{HHFW} = 6 MW$ 350°C bakeout **Passive Plates EF/RWM** Coils $I_{CHI} \sim 400 \text{ kA}$ 60 cm dia. ports Wide tang. access

NSTX Strategy to Address Issues Important for ST-CTF and ITER through ITPA and USBPO

- Explore physics of Spherical Torus / Spherical Tokamak to provide basis for attractive U.S. Component Test Facility (CTF) and Demo.
- Support preparation for burning plasma research in ITER using physics breadth provided by ST; support and benefit from "ITPA Specific" activities.
- Complement and extend tokamak physics experiments, maximizing synergy in investigating key scientific issues of toroidal fusion plasmas

NSTX Offers Access to Wide Tokamak Plasma Regimes

State-of-the-Art Profile Diagnostics with Excellent **Tangential Access Enable In-depth Research**

Extreme Elongation at Low I_i Opens Possibility of Higher β_P , f_{BS} Operation at High β_T

• Sustained $\kappa \ge 2.8$ (reached $\kappa = 3$) for many τ_{WALL} using rtEFIT isoflux *GA* control

121241

- Allowed by divertor coil upgrade in 2005, <u>no</u> in-vessel vertical position control coils
- High κ research important for CTF design studies

Low aspect ratio, high β provides high leverage to uncover key tokamak physics (e.g. RWM control, rotation damping, high elongation)

Rotation reduced far below RWM critical rotation profile

Dedicated H-mode Confinement Scaling Experiments Have Revealed Some Surprises

NSTX Data Key to Addressing High-Priority ITPA Tasks

ITER98PB(y,2) scaling does not represent low R/a data well

NSTX data used in conjunction with higher R/a data to establish ϵ (=a/R) scaling with more confidence

Detailed Transport and Turbulence Measurements during L-H Transition Reveals Important and Tantalizing Electron Transport Physics

Clear effect of multi-modes observed for super-Alfvénic, fast ion population

- ITER in new regime for fast ion transport
 - Interaction of many modes
- NSTX also routinely operates with super-Alfvénic fast ions;
 - Due to high power NBI, multi-mode transport can be investigated
 - Only machine capable of measuring q profile at large v_{fast} / v_{Alfven}

Increased Triangularity Reduces Peak Heat Flux to Divertor Target

NSTX studying access conditions and structure of different ELM types

Small shape change leads to reduction of ELM size

14

High performance can be sustained for several current redistribution times at high non-inductive current fraction • ∇p and NBI current drive provide up to 65% of plasma current \rightarrow High $\beta_N \times H_{89P} \sim 9$ now sustained for $\sim 50 \tau_F$ Current Redistribution Times (τ_{flat}/τ_{CR}) 2002-2003 2005-2006 $\beta_{N}H_{89P}$ ST-CTF Energy Replacement Times (τ_{flat} / τ_E)

D. Gates, Phys. Plasmas 13, 056122 (2006)

Mode-induced fast ion diffusion needed to explain neutron rate and $J_{\parallel}(\rho)$ evolution during late n=1 interchange activity

- High core-localized anomalous fast ion diffusion can account for neutron rate deficit
- Core δB from mode estimated to be 100's of Gauss → large χ_{fast}

- Diffusion of fast ions can convert centrally peaked J_{NBI} to flat or hollow profile
- Redistribution of NBICD makes predictions consistent with MSE

MHD-induced NBICD diffusion may contribute to "hybrid" scenarios proposed for ITER

Nova Photonics

Coaxial Helicity Injection has convincingly demonstrated the formation of closed poloidal flux at high plasma current

Evidence for high-I_P flux closure:

- 1. $I_P=160kA$ remains after CHI injector current $I_{CHI} \rightarrow 0$ at t=9ms
- 2. After t=9ms, plasma current decays away inductively

3. Once $I_{INJ} \rightarrow 0$, reconstructions track dynamics of detachment & decay

NSTX contributes strongly to fundamental toroidal confinement science in support of ITER and future ST's

- Unique ST facility with powerful heating systems, advanced plasma control systems and state-of-the-art plasma diagnostics
- Wide range of accessible tokamak plasma parameters in MHD, T&T, Boundary, and Energetic Particle research supported by full diagnostic set
- Active EF/RWM feedback stabilization system demonstrated for a wide range of rotation speed including ITER relevant low rotation
- Unique opportunity for understanding electron transport and microturbulence with high-k (electron scale) scattering system
- Uniquely able to mimic ITER fast-ion instability drive with full diagnostics
- Broad ITER and CTF-relevant boundary physics research program
- Rapid progress toward fully non-inductive high performance scenarios
- Soleonid-free 160kA closed-flux plasma formation in NSTX using CHI

(1) NSTX —