Research Highlights and Plans

Presented by M. Porkolab On behalf of the C-Mod Team

Fusion Power Associates

Annual Meeting

Oak Ridge National Laboratory

December 5, 2007

www.psfc.mit.edu/research/alcator

Work Supported by USDoE Office of Fusion Energy Sciences

C-Mod Unique in World and US Among High Performance Divertor Tokamaks

Unique in the World:

- High field, high performance divertor tokamak
- Particle and momentum source-free heating and current drive
- Equilibrated electron-ion coupling
- Bulk all metal high-Z plasma facing components
- ITER level Scrape-Off-Layer/Divertor Power Density
- Approach ITER neutral opacity, radiation trapping
- Highest pressure and energy density plasmas (ITER level)

Exclusive in the US :

- Lower Hybrid Current Drive
- ICRF minority heating
- Premier major US facility for graduate student training

C-Mod physics regime, machine capabilities and control tools are uniquely ITER-relevant

- Edge and Divertor: All metal walls. High divertor heat fluxes ~0.5 GW/m². High SOL neutral opacity (similar fuelling to ITER). High Lyman opacity, radiation trapping (closest to ITER).
- Core Transport: Equilibrated ions and electrons. No core fuelling or momentum sources (will be very low on ITER).
- Macro-stability: Can access ITER β range, as well as same B_T and absolute pressures (*important for disruption mitigation*).
- Wave Physics: Similar tools (ICRF and LHCD) to ITER. Same B, n => same

 ω_{p}, ω_{c} , similar ω (key for waves, LH feasibility).

Pulse length: τ_{pulse} >> τ_{CR} (exceeds ITER). Adding non-inductive CD capability (important for Steady State scenarios).

Combination of these features is unique and enables integrated studies of many key questions.

C-Mod Plays Major Role in Education of Next Generation of Fusion Scientists

25-30 graduate students doing their Ph.D. pically have ~ search on C-Mod (more students than scientists) Nuclear Science & Engineering, Physics and EECS (MIT) Collaborators also have students utilizing the facility (U. Texas, U.C. Davis, U. Wisc., ASIPP, China) - Current total is 31 (27 full-time on-site) - Fully involved in all aspects of our research, leading many of the experiments as session leaders MIT undergraduates participate through UROP program Host National Undergraduate Fusion Fellows during the summer

Lower Hybrid Current Drive: ~0.8 MA Driven with Phased Array Grill : Key Tool for AT Physics

- System commissioning went very well
 - Up to 2 MW source applied so far from 12 klystrons
 - No signs of power limits or significant arcing on couplers
- Close to 100% of current driven non-inductively in 1 MA plasma
 - Loop voltage 0 or reversed for more than 1 current relaxation time
 - Modeling indicates about
 .8 MA off-axis current
 drive from LH

Current Density Profile Control with Lower Hybrid Waves (LHCD)

Planned LHCD Upgrades (2009)

- Increased source power (from 3MW currently installed to 4 MW total)
- Advanced low-loss couplers/launchers
- More than doubling of net power to plasma (>2.5 MW)
- Improved j(r) diagnostics
 - Upgraded MSE (spatial channels)
 - Polarimeter array (ITER geometry)
- Goal: fully non-inductive, long pulse AT scenarios

Density Peaking at Low Collisionality: Good News for ITER

C-Mod Data Help Break Covariance Between ν and n/n_G Makes Extrapolation to ITER More Certain

Porkolab_FPA_12/07/ORNL

Tritium Retention is Major Challenge for ITER

Hydrogenic Retention in Refractory Metals (Mo, W) Surprisingly High

ICRF Sheaths Cause Impurity Sputtering: Depend on Wall Conditions and Plasma Transport

For 2009: Designing new antenna to minimize radial RF fields, minimize sheath potential

NIMROD Modeling of Massive Gas Disruption Mitigation: Excellent Agreement with Experiment

0.1

Π

-0.1

-0.2

-0.3

0.5

0.6

0.7

R (m)

0.8

€ Z

0.1

-0.1

-0.2

-0.3

0.5

0.6

0.7

R (m)

0.8

(m) Z

0.1

-0.1

-0.2

-0.3

0.5

0.6

0.7

R (m)

0.8

€ Z

- Rapid core cooling without the need for deep impurity particle penetration
- Good news for ITER
 - Next challenge:
 - runaway electrons (use LHCD to investigate)

Facility Plans and Major Enhancements

(Blue colored items require additional funds not in base program)

- Inspections (2008-09) insure facility reliability for at least the next 5 years
- Lower Hybrid upgrades
 - Add 1 MW source (to 4 MW); refurbish first launcher (reduced losses, simplified splitting/phase control, increased voltage/power handling); add second launcher/coupler (2009); spare klystrons (2008-2010)
 - Gas puff system at each coupler (improved plasma matching)
 - Add 5'th MW (if required, 2013)
- ICRF upgrades
 - New 4-strap antenna (consolidate 2 antennas into 1 port, 2009)
 - Fast-Ferrite Tuners for all 4 transmitters (real time adaptive tuning, 2009-10)
 - Power supply/control upgrades (improved realiability, 2011)
 - Convert transmitters 1 and 2 from fixed frequency to tunable (2012)
- Outer divertor upgrade (2012)
 - Continuous vertical plate (higher power/energy handling)
 - Tungsten in highest-heat-flux regions

Major Diagnostic Enhancements/Upgrades Planned 2009-2013

(Blue colored items require additional funds not in base program)

- Polarimetry [j(r), n_e(r), magnetic fluctuations] (2009)
- DNB aperture [improved spatial resolution for beam-based diagnostics] (2010)
- MSE upgrade (PPPL) [more radial channels] (2010)
- Doppler reflectometry (U. N.M.) [fluctuations, flows] (2010)
- Heterodyne ECE upgrade (U. Texas) [improved views] (2012)
- SOL Thomson scattering (2010)
- Compact Neutral Particle Analyzer [multiple chords] (2009)
- CO₂ scattering [fluctuations, waves] (2010)
- ICRF antenna reflectometer (2009)
- In-situ accelerator [first wall analysis] (2010)
- SPRED survey spectrometer (2009)
- Fast-ion loss detector (ASDEX) (2010)
- IR camera upgrade [divertor heat loading] (2009)
- Gas puff imaging upgrades (PPPL) [edge fluctuations] (2010)

RFQ ion source Vacuum vessel & accelerator plasma-facing components "tiles" electrostatic "poloidal" steering increasing $\otimes B_{toroidal}$ Poloidal B₁ View Deuterium ion beam neutrons / gammas -detectors

Toroidal field coil

C-Mod is Well Positioned to Continue Major Progress for Fusion Science and Fusion Energy

- Flexible, Capable, Cost Effective Facility
- Excellent Tools and Diagnostics
- Key Upgrades to Facility and Diagnostics
- Unique and Complementary Contributions to Joint (National and International) Experiments
- Model Validation across Broad Range of Dimensional and Dimensionless parameters
- Key Contributions to solution of challenges for ITER and Beyond

Collaborators are key participants in all aspects of the program

Domestic Institutions

Princeton Plasma Physics Lab U. Texas FRC U. Alaska UC-Davis **UC-Los Angeles UC-San Diego** CompX Dartmouth U. **General Atomics** I I NI Lodestar LANL U. Maryland **MIT-PSFC** Theory ORNL **SNLA** U. Texas IFS U. Wisconsin

International Institutions

Budker Institute, Novosibirsk C.E.A. Cadarache C.R.P.P. Lausanne Culham Lab **ENFA/Frascati** IGI Padua **IPP** Garching **IPP** Greifswald JET/EFDA JT60-U, JFT2-M/JAEA **KFA** Jülich **KFKI-RMKI** Budapest LHD/NIFS Politecnico di Torino Risø National Laboratory. U. Toronto

Coordination: USBPO, TTF, ITPA

Levitated Dipole Experiment

Research Staff: 1 scientists (Dr. Garnier), 1 engineer, 2 graduate students, Massachusetts Institute of Technology PI's (Kesner & Mauel), + 2-3 undergrad students

FY07/08 Campaign

- Perform initial experiments in levitated plasma heated with ECRH ; Floating coil: 0.7(1.2) MA, 1200 lbs
- Damaged upper support HT_c L-Coil: Replaced with Cu levitation coil
- Investigate stability of ECRH plasma confined by levitated dipole

FY09 Campaign

- Expanded diagnostics for detailed physics studies and increased run time
- Investigate the unique capability for high beta, high energy confinement, and adiabatic convective flows.
- Answer critical questions to evaluate the potential for advanced (non D-T) fuels.