

PPPL Research Highlights FY08

Rob Goldston, PPPL

For PPPL and our Collaborators

Fusion Power Associates Meeting December 4, 2008

Can Touch on Only a Few Highlights

- NCSX Project Closeout
- NSTX
 - ETG Mode Detection
 - Lithium Effects
 - Non-Axisymmetric Physics
- ITER
- Magneto-Rotational Instability
- How Should We Approach ReNeW?

NCSX Demonstrated Key Precision Assembly Step, Components Stored

- All modular coils completed to required accuracy
- 2 of 6 half-periods welded, required accuracy achieved
- All vacuum vessel subassemblies complete
- Half field period fit over vessel
- All TF Coils
 completed
- All components stored in NCSX Test Cell
- Full documentation this year

NSTX is Addressing Basic Toroidal Science For ST's, ITER and Fusion Development

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics New York U Old Dominion U** ORNL PPPL **PSI Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo **JAEA** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Short-Wavelength Turbulence in Plasma Core has Clear Characteristics of ETG Modes

- Fast waves at high harmonics of ion-cyclotron frequency (HHFW) heat electrons through electron Landau damping and TTMP
- Fluctuations measured by low-angle forward scattering of 280 GHz $\mu\text{-waves}$

- Detected fluctuations in range $k_{\perp}\rho_e$ = 0.1 0.4 propagating in electron diamagnetic drift direction
 - Rules out ITG and TEM modes as source of this turbulence
 - Agreement with linear gyrokinetic code (GS2) for ETG onset

Electron Gyro-Scale Fluctuations Can Be Suppressed by Reversed Magnetic Shear in Plasma Core

Shear-reversal produced by early NB heating during plasma

 Suppression of Electron Temperature Gradient (ETG) mode by shear-reversal and high T_e/T_i predicted by Jenko and Dorland, Phys. Rev. Lett 89 (2002)

ONSTX

Lithium Evaporative Coating Reduces Deuterium Recycling, Suppresses ELMs, Improves Confinement

Pulsed RMP coils induce ELMs, reduce density and Z_{eff}

Correction of n = 3 Error Field Plus Feedback Control of n = 1 Mode Reliably Extends Duration of High- β_N Plasmas

- Correction of n = 3 intrinsic error field maintains toroidal rotation
- Resistive Wall Mode can develop at high normalized-β: terminates discharge
- Feedback on measured n = 1 mode reliably suppresses RWM growth
 - Limitations on time response and applied mode purity explored for ITER

n=3 Error Field Correction With n=1 RWM Feedback and Lithium Coating Extends High-β_N Discharges

NSTX poloidal flow measurements are consistent with neoclassical theory computed with NCLASS/TRANSP

- Pseudo-velocity due to gyro-orbit finite lifetime effect is small in NSTX (≤ 0.5 km/s) compared to that apparent in TFTR (≤ 50 km/s).
 - In NSTX, this significantly reduces the uncertainty in comparing poloidal flow measurements to neoclassical theory.
- Higher-A tokamaks (DIII-D, JET) have reported v_{θ} inconsistent with neoclassical theory aspect ratio difference?

Investigated Momentum Transport Using Transient Perturbations to Separate Diffusivity and Pinch Terms

 n = 3 braking pulses perturb rotation in outer region

- Determine χ_{ϕ} , v_{pinch} after turnoff of n=3 pulse
 - NBI provides only known torque (calculated by TRANSP)

 Inferred pinch velocities in outer region agree reasonably well with theories based on low-k turbulence

Neoclassical Toroidal Viscosity Theory Generalized

Generalized treatment for NTV transport describes dynamics of bouncing $(\omega_{\rm b})$ trapped particles subjected to magnetic + electric toroidal precession $(\omega_{p} = \omega_{B} + \omega_{E})$ and collisions (v) in a combined form:

- The plasma is stable but not as stable as a vacuum!
- IPEC code applied to NSTX and ITER

Generalized NTV theory more consistent with NSTX flow damping results

ONSTX

PPPL is Strongly Engaged in ITER

Magnetorotational Instability Experiment

- To study fundamental physics of fast angular momentum transport in accretion disks
 - Can hydrodynamic turbulence support fast accretion? No!
 - Does MRI exist in the pure MHD form transporting angular momentum? We found its precursors!

MRI Experiment

Protostellar Disk

What are the Key Questions to Answer, *e.g.*, in an Initiative to Tame the Plasma-Material Interface ?

- **Q1** Can high-performance, fully steady-state plasma operation avoid high-energy ELMs and damaging disruptions?
- **Q2** Can extremely high radiated-power fraction be consistent with high confinement and acceptable (nD+nT)/ne?
- **Q3** Can magnetic flux expansion and/or stellarator-like edge ergodization reduce heat loads sufficiently, consistent with adequate He pumping?
- **Q4** Can tungsten or other solid materials provide acceptable erosion rates, core radiation and tritium retention?
- **Q5** Can dust production be limited, and can dust be removed?
- **Q6** Can liquid surfaces effectively handle high heat flux and provide adequate tritium exhaust, while limiting dust production?
- **Q7** Can plasma-material interface solutions developed at low neutron fluence be made compatible with the high neutron fluence of Demo?

What are the Program Elements Needed to Support, e.g., an Initiative to Tame the Plasma-Material Interface ?

Materials and Technology Development

- **A1** Develop new refractory PFC materials and test in both powerful PMI machine and under neutron irradiation
- A2 Develop and test PFC technologies for solid systems, including PFM to heat sink joining and He cooling with O and T removal
- **A3** Develop and test liquid PFC technologies, including modeling and experimental validation, and techniques for recycling evaporated lithium
- **A4** Develop technologies for real-time dust removal
- **A5** Develop long-pulse heating and current drive systems

Existing Confinement Experiments

- **A6** Develop predictive understanding of power scrape-off
- **A7** Develop non-inductive scenarios without ELMs and disruptions
- A8 Test innovative divertor configurations and PFC materials (both solid and liquid)
- **A9** Develop extensive diagnostics for plasma material interaction

Theory and Computation

- **A10** Increase theory and computation focus on edge and SOL physics
- **A11** Advance theory of plasma-material interaction, including surface properties under erosion and redeposition
- A12 Design new plasma-facing alloys and model liquid metals
- A13 Design coil systems for stellarator-like edge / MHD stability

What are the Requirements for a Confinement Device to Support, *e.g.*, an Initiative to Tame the PMI ?

- **R1** Input power / plasma surface area <~ 1 MW/m2
- **R2** Input power / major radius >~ 50 MW/m
- **R3** Heating power / H-mode threshold power > 6, at n = nG
- **R4** Stored energy / major radius ~ 5 MJ/m
- **R5** Flexible poloidal field system capable of wide variation in flux expansion and ability to divert field lines to large R
- **R6** Non-axisymmetric coils to produce stellarator-like edge and improve MHD stability
- **R7** High temperature ~ 1000K first wall operational capability
- **R8** Replaceable first wall and divertor
- **R9** Pulse length $\sim 200 1000$ sec; total on-time $\sim 10^{6}$ sec / year
- **R10** Extensive access for surface and plasma diagnostics, PFC services
- **R11** Deuterium and trace tritium operational capability
- **R12** Synergy with a Fusion Materials Irradiation Facility

Conclusions

NCSX project is being closed out carefully

NSTX collaboration is producing exciting results

- ETG mode identification
- Lithium
- Non-axisymmetric physics

ITER is central to the U.S. and PPPL fusion program

The MRI instability is nearly in our grasp

We need to think carefully about ReNeW

– Questions → Program Elements → Requirements