

Highlights of Some Research Activities:

> Alcator C-Mod
 > Levitated Dipole Experiment :LDX
 > ICF/HEDP Activities

Miklos Porkolab

With input from Earl Marmar (C-Mod), Jay Kesner (LDX), Mike Mauel (LDX), Rich Petrasso (ICF/HEDP)

Fusion Power Associates Meeting Livermore, CA, 12.04.2008

Alcator C-Mod Program Overview Earl Marmar and the C-Mod Team

Compact highperformance divertor tokamak research to establish the plasma physics and engineering necessary for a burning plasma tokamak experiment and for attractive fusion reactors.

Developing the "steady state", high-Z wall, highfield tokamak for ITER and beyond

C-Mod physics regimes, machine capabilities and control tools uniquely ITER-relevant

- Edge and Divertor: All high-Z solid plasma facing components (key for D retention, effects on core).
 Divertor characteristics similar to ITER (power flow, neutral and radiation opacity)
- Core Transport: Equilibrated ions and electrons. No core fuelling or momentum sources
- > Macro-stability: Can access ITER β range, as well as same B_T and absolute pressures
- Wave Physics: Similar to ITER: ICRF bulk plasma heating; FWCD; Critical test of LHCD profile control for ITER AT operation [same B, n; => same ω_{pe}, ω_{ce}, ω]
- > Pulse length: $\tau_{pulse} >> \tau_{CR}$ Relevant non-inductive CD capability , *important for Steady State scenarios*
- Combination of these features is unique and enables integrated studies of many key questions.

Recent C-Mod Results Indicate Potential Improvements in ITER Design and Operation

- Intrinsic Rotation and Mode Conversion Flow Drive
- Lower Hybrid Current and Flow Drive
- Hydrogenic Retention in All-Metal Plasma Facing Materials
- ICRF Impurity/Sheath Effects
- Disruptions and Runaways
- High Performance L-Mode

Discovered Flow Drive in recent ICRF mode conversion experiments which is twice as efficient as *intrinsic rotation* Potentially Applicable to ITER

- Active ICRF Flow Drive
 - At least a factor of 2 above the usual scaling seen with pressure/current
- Use multi-frequency capability
 - 80 MHz, proton minority
 - 50 MHz, ³He mode conversion
 - Both layers near the axis
- Near-axis conversion to Ion Cyclotron Wave (ICW)
 - propagates back toward low field side
 - damps and drives flow at ³He cyclotron layer

Mode Conversion Flow Drive

 $B(R_0) = 5.1$ Tesla; ³He fraction ~ 10%

Lower Hybrid Waves Used to Control Current Profile by Variable Grill Antenna Phasing

- Magnitude of CD in agreement with Fisch-Karney theory
- Current is driven off axis, q(0)>1 (profiles from MSE-constrained EFIT)
- Largest magnitude of current driven by fastest waves
- Results being used to validate modeling
 - GENRAY/CQL3D + TORIC-LH)

Strong Counter Current Toroidal Flow Drive Observed with co-Current LHCD

Toroidal plasma flow observed in the counter Ip direction and only in the presence of Co-Current drive with Lower Hybrid waves (co-LHCD)

New opportunity to explore momentum confinement and plasma rotation

Opportunity to tailor rotation shear when combined with ICRF flow drive

Rice, Parker, Wilson, et al, IAEA, Geneva, 2008

Improved L-Mode: H-mode Confinement with L-mode Particle Transport - A New Possibility for ITER ?

- Unfavorable ∇B drift direction; increased δ, I_p
 - Very high H-mode threshold (at least x3)
- H-mode confinement
 - (H-ITER-98y2 ~ 1)
- T_e barrier, little or no additional n_e barrier
 - No ELMs, no impurity accumulation
- Interesting potential as LHCD target for Advanced Scenarios
- Possible application to ITER?

E. Marmar, A. Hubbard, et al, IAEA, Geneva, 2008

Hydrogenic Ion Retention in all Metallic C-Mod Walls Surprisingly Similar to Carbon PFC Tokamaks

- Serious concern about tritium retention in ITER (with or without carbon)
 - -Tungsten proposed for ITER 2
- With clean Mo PFCs on C-Mod
 - Retention can be a large fraction (few %) of the injected gas
- Surprisingly similar to carbon PFC tokamaks
- Retention is approximately independent of plasma density
- Independent of heating or confinement mode

B. Lipschultz, D. Whyte, et al, IAEA, Geneva, 2008

Near Term Upgrades of the RF Wave Launchers, Power Systems, Controls and Diagnostics in Progress

 Lower Hybrid upgrades
 Add second launcher with innovative power splitter design

➢ ICRF upgrades

New 4-strap antennas (x2)
Fast-Ferrite Tuners for all 4 transmitters (real time tuning)
Tuneability (40 – 80 MHz) added for 3rd and 4th transmitters

Diagnostic upgrades

DEMO like divertor solid metal, actively heated to 600 C

Artist Conception of Jupiter's Plasma Ring fuelled by the Vulcanic Activity of the moon Io

Levitated Dipole Confinement Concept: Combining the Physics of Space & Laboratory Plasmas

J. Spencer

- Akira Hasegawa, 1987
- Three key properties of active magnetospheres:
 - High beta, with ~ 200% in the magnetospheres of giant planets
 - Pressure and density profiles are strongly peaked

 And solar-driven activity increases peakedness

The LDX Team is Led by PIs Jay Kesner (MIT), Mike Mauel (Columbia), and Chief Scientist Darren Garnier

Additional team members include 2 engineers, 1 technician and 4 graduate students

The LDX is located at MIT in the TARA cell; shown is an artificial cut in the chamber to display the levitated ring

Levitated Dipole Experiment

MIT-Columbia University

Previous Results up to 2007 with a Supported (non-Levitated) Dipole in LDX

High-beta (β ~ 26%) plasma created by multiple frequency ECRH with sufficient gas fueling

- Using 5 kW of long-pulse ECRH, plasma with trapped fast electrons (*E_h* > 50 keV) were sustained for many seconds.
- Magnetic equilibrium reconstruction and x-ray imaging showed high stored energy > 300 J (*τ_E* > 60 msec), high peak β ~26%, and anisotropic fast electron pressure, *P*_⊥/*P*_{||} ~ 5.
- Stability of the high-beta fast electrons was maintained with sufficient gas fueling (> 10⁻⁶ Torr) and plasma density.
- D. Garnier, et al., PoP, (2006)

Levitation of Current Ring (Routine up to 3 hrs) on LDX Greatly Improved Plasma Performance in 2008

(M. Mauel, Invited talk, November 2008 APS Meeting, Dallas, TX)

- The mechanics of magnetic levitation is proven reliable.
- Levitation eliminates parallel particle losses and allows a dramatic peaking of central density.

LDX has demonstrated the formation of natural density profiles in a laboratory dipole plasma.

 Improved particle confinement improves hot electron stability and creates higher stored energy.

[Twice that of the supported ring case for the same input power]

 Fluctuations of density and potential show large-scale circulation that is the likely cause of peaked profiles.

Next Step : Install additional heating (0.5 MW ICRH and 20 kW 28 GHz ECH) to heat bulk plasma and test beta limit; improve physics understanding with more diagnostic

Scientists

Rich Petrasso PSFC Division Head, Chair, OMEGA Laser Facility Users Group Johan Frenje Chikang Li Fredrick Séguin

PhD Students

Dan Casey Mario Manuel Hans Rinderknecht Mike Rosenberg Nareg Sinenian

J. R. Rygg et al., Science 319 1223 (2008)

Close collaborators and support:

HEDP / ICF Division – Key Program Elements

ICF Physics on OMEGA and the NIF

- Shock and implosion dynamics
- ρR and burn asymmetries*
- Fuel-shell mix
- Ablator burn-through
- Hydrodynamic instabilities
- Mass assembly for Fast Ignition
- External E & B fields*
- Fields in Hohlraums*

HED Physics

- Laser-generated E & B fields*
- Magnetic reconnection*
- Particle slowing in warm, dense matter
- Astrophysical jets

Nuclear diagnostics for OMEGA, the NIF, and HEDP

- Monoenergetic proton radiography*
- Nuclear burn time history
- 3D nuclear burn imaging
- Charged-particle spectrometry
- Neutron spectrometry*
- Ablator diagnostics for the NIF*

-Theory and computation

- Electron beam interactions with plasmas
- Charged-particle slowing in plasmas
- Nuclear reactions in ICF & astrophysics

* Examples to follow

Monoenergetic charged particle radiography setup at OMEGA

MG B-field reconnection has been observed and quantified at OMEGA with 14.7-MeV-proton radiography

Mega-Gauss B-field generation, evolution, & instabilities have been studied with 14.7 MeV proton radiography at OMEGA

C. K. Li et al., PRL <u>99,</u> 015001 (2007)

<u>Record areal density</u> at OMEGA (202 ± 7 mg/cm²)* was measured by MIT-designed compact proton spectrometers**

*T. C. Sangster *et al.*, PRL <u>100,</u> 185006 (2008) ** F.H. Seguin *et al.*, Rev. Sci. Instrum. 74, 975 (2003)

Proton radiography of laser-irradiated vacuum Au hohlraums at OMEGA reveals fields and hydrodynamic flows

During NIF start-up, MIT compact proton spectrometers* will diagnose ablator ρR and ρR asymmetries**

Two simulated "failure-mode" proton spectra

* F.H. Seguin *et al.*, Rev. Sci. Instrum. <u>74</u>, 975 (2003).

** J.A. Frenje et al., accepted for publication in Phys. Plasmas (2008).

The MIT-designed neutron spectrometer (MRS – Magnetic Recoil Spectrometer) will measure areal density, ion temperature, and yield on the NIF

Other exciting program elements, including educational programs, movies, etc, may be found at the PSFC website

www.PSFC.MIT.EDU