#### The Status of Mirror Research

Based on a Workshop in Berkeley, CA. Sept. 8-9, 2008

25 Participants - 6 Labs. and 5 Universities - Japan & Russia

T. C. Simonen FPA Meeting 12/4/08

## The Axisymmetric Tandem Mirror



- Simplified Physics, Engineering, and Technology
  - No Thermal Barriers
  - No Minimum-B Magnets
  - No new Technology Development
  - Old & New Ideas + New Data (Russia & Japan)

## ATM Improves Construction, Confinement, and Power Balance

- Circular coils enable smaller end plugs and higher fields
- Smaller end plugs eliminates need for thermal barriers
- Higher fields reduce end losses
- Axisymmetry eliminates neoclassical radial transport
- Large end expansion enables high electron temperature
- Central plasma suppresses loss cone and Alfven modes.
- ITER technologies are adequate.

# How Can a Simple Mirror be MHD Stable?

- Five Demonstrated Methods
  - 1.Expander plasma Outflow (GDT)
  - 2.Plasma Rotation (MCX)
  - 3. Divertor(Tara)
  - Pondermotive (Phadrus & Tara)
  - 5. End Wall Funnel Shape (Nizhni Novgorod)

- Five Untested Methods
  - 1.Expander Kinetic Pressure (Post)
  - 2. Pulsed ECH Dynamic Stabilization (Post)
  - 3.Wall Stabilization & Feedback (Berk)
  - 4.Non-paraxial End Plugs (Ryutov)
  - 5.Cusp End Plugs (Kesner)

#### Gamma 10 Tandem Mirror at Tsukuba U. Japan 27 m Long with Large End Tanks



#### Gamma 10 Magnet Geometry Powered by ICRF and ECH Gamma 10 also develops LHD Gyrotrons



## Suppression of Gamma 10 Turbulence with ECH



- Red without ECH
- Blue with ECH
- ExB Rotation Shear
- Like H-mode & ITB
- Possible Tokamak
  Application?



Highest SX- $T_e$  estimated from Soft X-ray seems to be 0.5 ~ 0.75 keV, but its confirmation must be done by other diagnostics like Thomson Scattering.

#### GDT at Novosibirsk, Russia 12 m Long with Large End Tanks



# **GDT Experimental Set-up**

#### Powered by Deuterium Neutral Beams



#### GDT Central Beta Reaches 60%

**Design level for Neutron Source** 



recent  
achievements  
$$\beta_{max} \approx 60\%$$
  
 $n_f \approx 5 \times 10^{19} \text{ m}^{-3}$ 

11

## GDT Electron Temperature (Thomson Scattering)



#### System Studies Summary

| • |        |          | Neutron<br>Source[1] | Hybrid<br>Reactor<br>[2] | Power<br>Plant[3] | Advanced<br>Power<br>Plant [4] |
|---|--------|----------|----------------------|--------------------------|-------------------|--------------------------------|
| • | L      | m        | 10                   | 30                       | 30                | 95                             |
| • | а      | m        | 0.08                 | 1.5                      | 1.5               | 0.42                           |
| • | B-min  | Т        | 1.3                  | 3.0                      | 3.0               | 3.0                            |
| • | B-max  | Т        | 20                   | 18                       | -                 | 26                             |
| • | NBI    | keV      | 70                   | 70                       | 1000              |                                |
| • | NBI    | MW       | 30                   | 70                       |                   | 30                             |
| • | Ne     | 1e20 m-3 | 2.0                  | 1.0                      |                   | 2.2                            |
| • | Ti     | keV      | -                    | 30-60                    | 22                | 30                             |
| • | Те     | keV      | 0.75                 | 50-150                   | 66                |                                |
| • | Beta   | %        |                      | 30                       | 40                | 60                             |
| • | P-neut | MW       | 2                    | 100-500                  | ) _               | 960                            |
| • | Flux   | MW/m2    | 2                    | 2.7                      |                   |                                |
| • | Area   | m2       | 1.5x0.6              |                          |                   |                                |
| • | Q      |          | 0.07                 | 1.5 to 5                 | 10                | 40                             |

- [1] D.D. Ryutov, et.al., J. Fusion Energy, 17, p253 (1998)
- [2] J. Pratt & W. Horton, Phys. Plasmas, 13,042513 (2006)
- [3] D.D. Hua & T.K. Fowler, LLNL Report UCRL-ID-204783 (June 14, 2004)
- [4] R.W. Moir & T.D. Rognlien, Fusion Sci. & Tech 52, p408 (2007)

#### The ATM is Suited for Many Applications

- Q ~ 10 for electric power with ignited central cell
- Q ~ 3 to 5 for Fission-Fusion Applications
- Q < 1 for nuclear subcomponent and materials testing with low tritium consumption

Further evaluation is warranted

## Neutron Flux vs Electron Temperature

