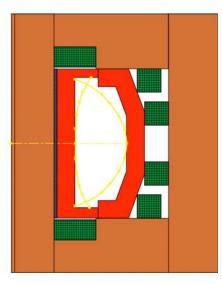
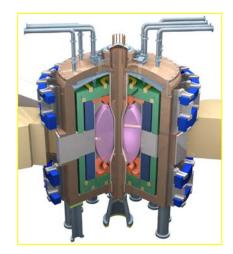
Fusion Nuclear Science Facility and Program

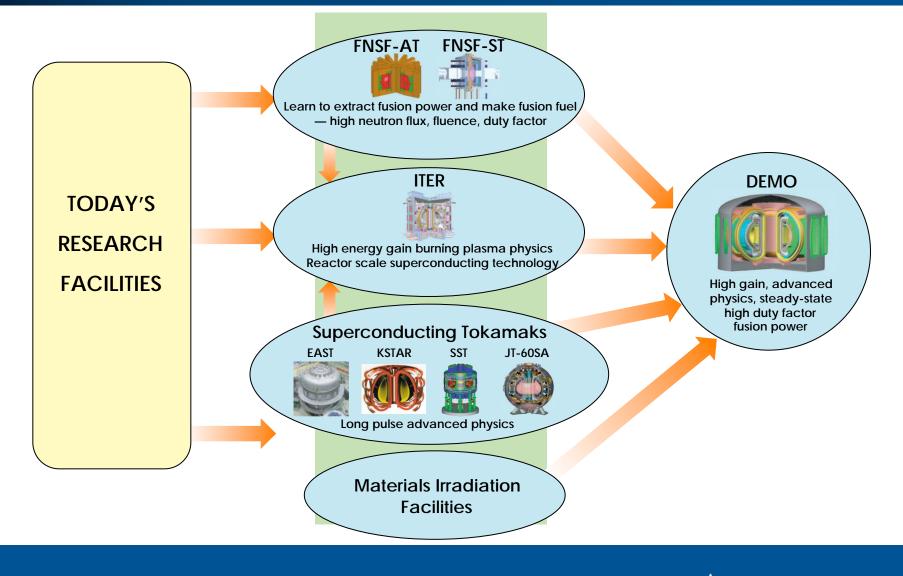
by R.D. Stambaugh

Fusion Power Associates 31st Annual Meeting and Symposium Fusion Energy: Focus on the Future


December 1-2, 2010


Washington, DC

Mission of a Fusion Nuclear Science Facility (FNSF) Two Candidates: FNSF-AT (FDF) and FNSF-ST (ST-CTF)


- FNSF should:
 - Produce significant fusion power (100-300 MW)
 - Demonstrate fusion fuel self-sufficiency
 - Show fusion can produce high grade process heat and electricity
 - Provide a materials irradiation facility to develop low activation, high strength, high temperature, radiation resistant materials
 - Enable research on high performance, steady-state, burning plasmas for Demo
- By operating steady-state with
 - Modest energy gain (1<Q<7)
 - Operate 30% of a year in 2 week periods
 - High neutron fluence (3-6 MW-yr/m²)

Research on FNSF, ITER, Superconducting Tokamaks, and Materials Irradiation Facilities Enables DEMO

The FESAC Planning Panel Identified the Gaps That Must Be Filled Between ITER and a DEMO

8

How Initiatives Could Address Gaps

Address GapsLegendMajor Contribution3Significant Contribution2Minor Contribution1No Important Contribution1	G-1 Plasma Predictive capability	G-2 Integrated plasma demonstration	G-3 Nuclear-capable Diagnostic	G-4 Control near limits with minimal power	G-5 Avoidance of Large-scale normal events in tokamaks	G-6 Developments for concepts of off-normal plasma events	G-7 Reactor capable RF launchi structures	G-8 High-Performance Magnets	G-9 Plasma Wall Interactions	G-10 Plasma Facing Componen	G-11 Fuel cycle	G-12 Heat removal	G-13 Low activation materials	G-14 Safety	G-15 Maintainability
I-1. Predictive plasma modeling and validation initiative	3	2		2	2	3	1		2						
I-2. ITER – AT extensions	3	3	3	3	3		2		2	2	1	1		1	1
I-3. Integrated advanced physics demonstration (DT)		3	3	3	3	1	3	2	3	3	1	1	1	1	1
I-4. Integrated PWI/PFC experiment (DD)		1		1	2		2	1	3	3	1	1		1	1
I-5. Disruption-free experiments	2	1		2	1	3		1	1	1					
I-6. Engineering and materials science modeling and experimental validation initiative							1	3	1	3	2	3	3	2	1
I-7. Materials qualification facility							1			3	2	1	3	3	
I-8. Component development and testing			1				2	1		3	3	3	2	2	2
I-9. Component qualification facility	1	1	2	1	2		3	2	2	3	3	3	3	3	3
FDF	2	3	3	3	3		3		3	3	3	3	3	3	3

s free

ing

ts

Off-

* A Fusion Nuclear Science Program and Facility Fills Nearly All the Gaps

The FNSF Objectives Are Complementary to ITER

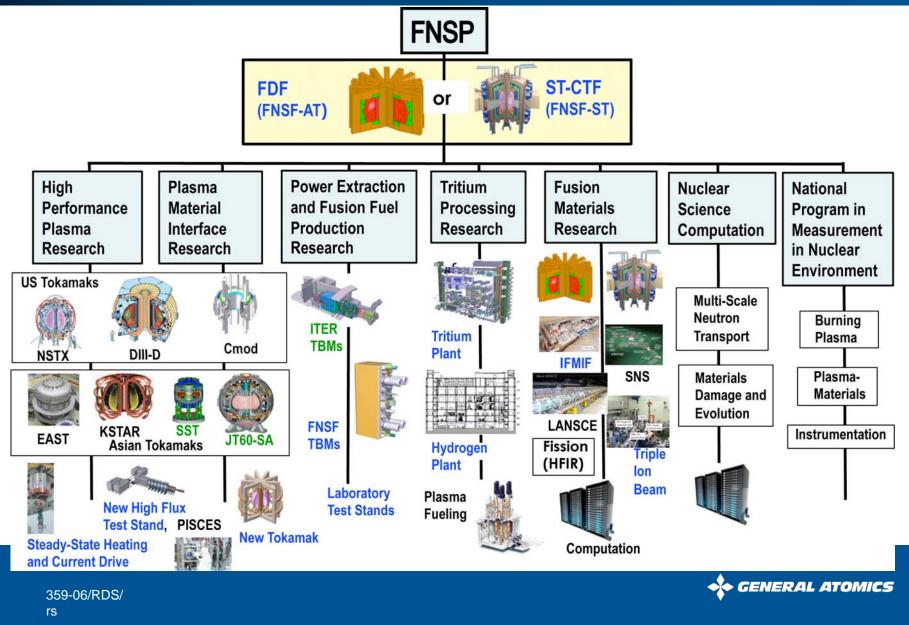
Issue	Today's Exp'ts	ITER	FNSF -AT	Mat'ls Irrad Facs	ITER+ Mat'ls+ FNSF-AT	DEMO
High Gain Q > 10		3	2		3	R
Alpha Containment & Physics	1	3	2		3	R
Confinement at Large Size	1	3	1		3	R
Pulsed Heat Loads	1	3	1		3	R
Reactor Scale Superconducting Technology	1	3			3	R
Exhaust Power Handling (~10 MWm ⁻²)	1	3	3		3	R
Tritium Handling and Safety	1	3	3		3	R
Integrated Plasma Performance in SS	1	2	2		3	R
Steady-State @ High Beta (β_N , f _{bs})	1	2	3		3	R
High Neutron Wall Loading ($\Gamma_n \sim 2 \text{ MWm}^{-2}$)	1	2	3		3	R
Tritium Self-Sufficiency (TBR > 1)		1	3		3	R
PFC and Divertor Materials Lifetime	1	2	3		3	R
FW/Blanket Materials/Components Lifetime		1	3	1	3	R
Materials Characterisation (>100 dpa)		1	2	3	3	R
High Temperature Blankets (electricity, H ₂)		2	3		3	R

1 2 3 R

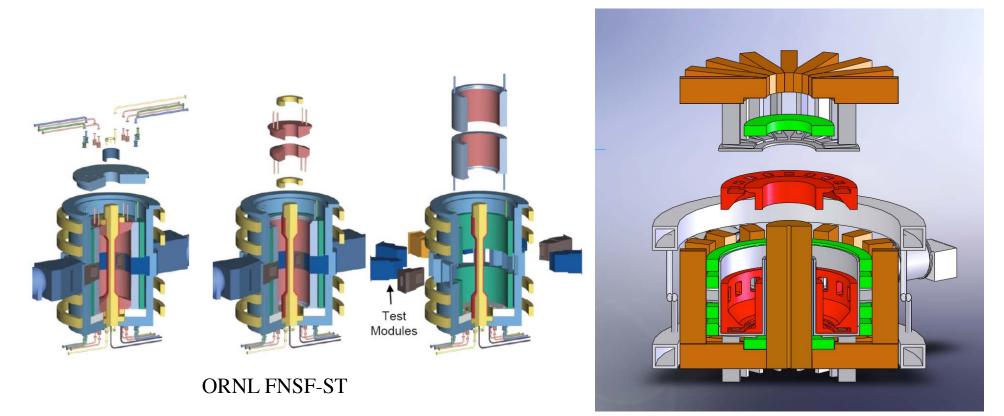
Key:

Will help to resolve the issue

Will contribute significantly to resolution of the issue

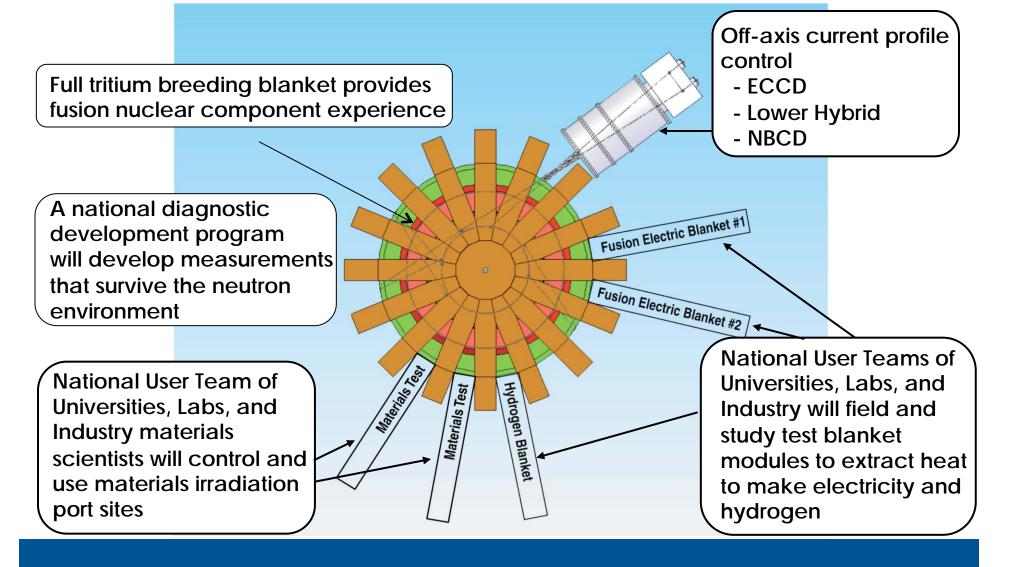

Should resolve the issue

Solution is essential


Today's Expt's = DIII-D, C-Mod, NSTX, JT-60U, JET, ASDEX-U, Tore Supra, JT-60 SA, KSTAR, EAST, SST-1

An FNSF Can Be the Lead Element in a Broader Fusion Nuclear Science Program (FNSP)

FNSF Must be a Research Device: Maintainable, Flexible, Re-configurable



GA FNSF-AT (FDF)

*A defining characteristic of device approaches

FNSF Will Support Large National User Teams (Goal 1000 Users)

The Research Program Envisions Three Main Blanket Phases and a TBM Program

	1	2	3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	≺કા H	rart D	UP≯ DT			IST I LAN	MAIN Ket				SECOND MAIN BLANKET									THIRD MA BLANKE		
Fusion Power (MW)	0	0	125	; 1	25		2	50			25	0		2	50			25	0		4	00
P _N /A _{WALL} (MW/m ²)			1	i I	1			2			2)		1	2			2)		3	3.2
Pulse Length (Min)	1		10	į	SS		S	SS			S	S		S	S			S	S		S	SS
Duty Factor	0.01	1	0.04	Ļ ().1		0	.2			0.	2		0	.3			0.	3		0).3
T Burned/Year (kG)			0.28	3 ().7		2	.8			2.	8		4	.2			4.	2			5
Net Produced/Year (kG)				⊢().14	ł.	0.	56			0.5	56		0.	84			9.0	34			1
Main Blanket	He Cooled Solid Breeder Ferritic Steel									Dual Coolant Pb-Li Ferritic Steel								Best of T RAFS				
TBR				¦0	.8		1	.2			1.	2		1	.2			1.2	2		1	.2
Test Blankets				I I		1,2	2				3	3 ,4	Ę	5,6				7	7,8 9,10)
Accumulated Fluence (MW-yr/m ²)			0.0	;_ 6¦			1	.2					1		.7					ł	7.	6
				Ì																		

A Fast Track Plan to Get to a Net Electric DEMO

	16	17	18	19	2020	21	22	23	24	25	26	27	28	29	2030	31	32	33	34	35	36	37	38	39	2040
ITER Key Schedule Elements				۰F	irst Pla	sma						• []	T		• Q=1	0									
FNSP Program Goals and Objectives				o													¢								
Show Significant Fusion Power																									
Demonstrate Fusion Fuel Self-Sufficiency																									
Produce High Grade Process Heat From Fusion										_															
Show Fusion Can Produce Electricity																									
Operate a Blanket With DEMO Relevant Irradia	tion L	fetime	es																						
Field Plasma Diagnostics Suitable for a Power F	Plant															 									
Fusion Nuclear Science Facility (FNSF)	••••••					• Sta	rt Ops			DT			•••••			••••••			*********						
Commissioning Operation (H, D, DT pulsed)																									
Helium Cooled Ceramic Breeder Blanket																									
Dual Coolant Lead Lithium Blanket																		-							
Oxide Dispersion Strengthened Ferritic Steel B	lanket												$\mathbf{\lambda}$											•	
Fielding TBMs on FNSF											1,2					3,4		5,6				7,8		9,10	
Fusion Materials Irradiation and Developmen	t Pro	gram																							
Materials and Full Components Irradiation in Fl	VSF																								
Accelerator Based Lifetime Irradiation Data		• Init	ial Da	ta								• Dat	a on (DDS F	erritic !	Steel	for DE	MO							
Triple Ion Beam Facility	• Dat	a on (DDS F	erritic	Steel				Ĭ						\square										
Fission Reactor Irradiations																J.									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Net Electric DEMO Power Plant (1000 MWe)				••••••			• Initi	iate D	esign						•Build	•Blar	ket D	ecisio	٦			• Ope	eration		

DEMO design initiated by first plasma in ITER. DEMO construction triggered by Q=10 in ITER, first phase accomplishments in FNSF, and materials data on ODS Ferritic Steel. FNSF enables choice between two most promising blanket types for DEMO.

FNSF Must Make Steady-State Fusion Power and a Series of Progress Elements Toward Fusion Energy

- Produce significant fusion power in true steady-state (< 3 dpa)
- Show fusion can make its own fuel
 - Initial result in < 3 dpa</p>
 - Full blanket development program in 10-20 dpa
- Extract high grade process heat from fusion reactions
 - Initial result in < 3dpa, full results in 10-20 dpa
- Show electricity produced from the process heat
 - 300 kW from one of the first test blanket modules (< 3dpa)
- Show fusion chambers can survive high plasma and neutron fluences

 Results obtained for three blanket types (10-20 dpa to each)
- Develop plasma measurements suitable for a DEMO (10-20 dpa)
- Obtain high fluence irradiation data on materials, assemblies, welds, etc. (30-60 dpa lifetime, survey 50,000 samples at 20 dpa)

