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Abstract
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The conventional pathways to fusion—MCF and ICF—have proven to be very
long and very expensive.  These two approaches are now embodied in two 
multi-billion-dollar facilities, ITER for MCF and NIF for ICF. These two 
approaches differ by many orders of magnitude in fundamental physical 
quantities (density, burn time, fuel pressure, and fuel volume). Given such 
large differences, it is reasonable to ask an obvious question: 
       is there anything in between the extremes of MCF and ICF?
In this paper, we take a new “first principles” look at the conditions under 
which fusion can occur. We review the fuel conditions (e.g., confinement 
time, density, temperature) that must be met to achieve significant fusion 
energy release. By comparing loss rates with fusion rates, we can identify 
the density-temperature space where fusion gain can be achieved.  This 
simple analysis offers a general understanding of the extreme differences 
between the conventional approaches to controlled fusion, MCF and ICF.  
The analysis shows that the constraint of steady-state operation forces MCF 
to operate at the low end of the density spectrum and that the constraint of 
unmagnetized fuel forces ICF to operate at the high end.  Most importantly, 
the analysis shows that using a magnetic field in the fusion fuel allows 
operation at an intermediate density (10e18-10e22/cm3), a density range that 
has many attractive features and potentially overcomes some of the 
obstacles, particularly cost, faced by the more conventional approaches.  



FUSION 101--the questions
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Under what conditions (fuel density, temperature, magnetic field, etc.) 
 can useful fusion energy release occur?  What are the practical limits 
 on these conditions?

Why are there so many orders of magnitude difference in density, volume,
power, etc., between NIF (very high density) and ITER (very low density)?

Are three common perceptions correct?
 There are only two viable approaches to fusion--ICF and MCF.
 Fusion is very high cost.   Fusion is 30 years away. 

Have there been any promising fusion stones left unturned?

Is there anything in between ICF (NIF) and MCF (ITER)?

What would be the cost of a facility to access an intermediate region?
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“Ballpark” answers--American Journal of Physics Vol. 77,
pp. 407-416, May 2009.

Radiation losses determine a minimum temperature:

              must be approximated:

ε,γ are geometric quantities, i.e., for spheres ε=4π/3, γ=1/3.

Loss rates depend upon ni, T, a, model for K=Ki+Ke, geometry (ε, γ), profile
details (α), and, possibly, magnetic field B (through K).

;   find ni, T, B so that φ < 1;



IL-10_10-5

The conduction rate can be used to determine the minimum system 
size and other relevant parameters for a desired loss ratio φ.

Minimum size

Fuel Mass

Fuel thermal energy

Required heating power

Required surface heating (intensity)

In the simplest, “classical,” form, the thermal conductivity for an
unmagnetized plasma depends only on temperature:  K  =C  T     .
With magnetization, the conductivity is reduced by a factor of 1+(ωτ)  . 
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Unmagnetized fuel must operate at very small size, very high 
density & pressure
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“Steady state” operation requires pressure < 1000 atm., is not possible,
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Unmagnetized fuel must operate at very small size, very high 
density & pressure
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Unmagnetized fuel must operate at very small size, very high 
density & very high pressure
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In ICF, the fuel is heated by compressional (hydrodynamic)
work of the pusher

NIF requires an implosion velocity of 40 cm/µs (900,000 mi/hr) and a radial
convergence (initial-radius/final-radius) of 30.

For conventional targets, "the optimal velocity...is the primary determinant
of the minimum size driver for ignition..."--J. D. Lindl, UCRL-119015, 11/95. 
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A magnetic field makes “steady state” operation feasible; 
magnetization reduces the size, energy, and power required.
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A magnetic field makes “steady state” operation feasible; 
magnetization reduces the size, energy, and power required.
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TFTR -- 1e14/cm3, 20 keV, 70 cm, 7 MJ, 50 MW

ITER -- 1e14/cm3, 8 keV, 240 cm, 320 MJ, 130 MW
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NIF and ITER differ by factors of 1e4-1e16 in basic physical
quantities.

Stacks of $1:  1e4=3.3 ft, 1e12 (bailout)=encircle earth 2.5 times
                            1e16=3 round trips to sun

The constraint of unmagnetized fuel forces ICF to operate at high-density,
the constraint of “steady-state” forces MCF to operate at low density.
                 What if these constraints were relaxed???
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Knowing the cost of ITER and NIF, the cost of fusion facilities in any 
region of parameter space can be estimated.

The reduced size/energy (when compared to ITER) and reduced power (when 
compared to NIF) lead to a very much lower cost at an intermediate density 
using magnetized fuel. 
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Can the intermediate density space be accessed?
        At all?    At low cost?

The velocity required to compress a
magnetized plasma by a magnetically
driven cylindrical liner is orders of 
magnitude less than required in ICF.

An example:
Derived:

Assume 10% efficiency, convergence 10 -->  need 12-cm-diameter,
3.6-cm-long liner having a kinetic energy of 16 MJ.
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The Atlas capacitor bank (23 MJ, 30 MA, 6 µs) at NTS was designed
to drive imploding liners in the range of 1-10 MJ, 0.1-1 cm/µs to
create high energy density environments.

Atlas’ cost of $50M confirms the simple cost estimates for fusion facilities.

Atlas is, serendipitously, an ideal machine for accessing the intermediate
density regime by compressing magnetized fuel with a magnetically
driven liner.

6 ft. man -->



IL-10_10-9

Although other methods can be considered, the Russian “MAGO”
plasma formation system creates plasmas having the density
and temperature (1e18/cm3, 300 eV) required for our example. 

The All-Russian Institute of Experimental Physics (VNIIEF--the “Russian Los
Alamos”), building on the work of Nobel Laureate Andre D. Sakharov (”father
of Russian H-bomb”), has developed explosively powered generators that 
develop more electrical current (300 MA) and energy (200 MJ) than any US 
facility.
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The first neutrons ever produced by the US particle beam fusion 
program came from a magnetized target driven by an electron beam 
(REHYD, 1 MeV, 250 kA, 100 ns, 0.04 TW); see Phys. Today 8/77

Ι

Bθ

A non-relativistic precursor (5-15 kA, 1 µs) was 
stopped by the collector, creating a voltage which 
induced an electrical discharge in the fuel.

The 3-mm-diameter targets imploded at 4 cm/µs.

10  -10   neutrons were observed in CD  wire 
and D-T gas fillled (6 x 10   /cm ) targets.

No neutrons were observed without the precursor
or in a variety of "null" targets.

Two-dimensional MHD computations  indicated a 5-20 eV preheat, 300-500 ev 
final temperature, consistent with the observed neutron yield (Lindemuth 
and Widner, Phys. Flu. 24, 1981, p. 746).

Sandia computations predicted high gain for ion and electron magnetized 
targets at low intensity (Sweeney and Farnsworth, Nuc. Fus., 1981, p. 41). 
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Many combinations of plasma formation and implosion drivers
appear possible for accessing the intermediate density regime

Compression of a magnetized plasma by an imploding pusher/liner was
named Magnetized Target Fusion (MTF) by LANL in 1991; more recently,
the term Magneto-Inertial Fusion (MIF) has been used.  

MTF/MIF does not have the severe density constraints of MCF and ICF.  MTF/
MIF may be possible over a density range covering 4-6 orders of magnitude. 

AFRL/LANL/UNR FRC/Shiva-Star 
   (J. Degnan, G. Wurden et al.)

 SNL “Z”  MAGLIF MAGnetized Liner Inertial Fusion
                                  (S. Slutz et al.)
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But, what if the thermal losses are Bohm-like rather than classical?

Computations by Dawson and experiments at Columbia U. suggest that the
losses should be classical, but even if the losses are Bohm, there is a 
large intermediate space where MTF should be lower cost than ICF, MCF 
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Controlled Fusion is a long-term, expensive proposition--or is it????
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ICF and MCF differ by 10   --10     in 
fuel density and time scale and by 
more than 10    in burning fuel 
volume.  The vast parameter space 
between these two extremes is 
unexplored.

MTF can be investigated using
machines that already exist (e.g.,
Atlas $50M).

The low cost and size of experimental
facilities should significantly reduce
fusion’s development time.

Unfortunately, unless the US program 
adopts a “balanced portfolio” 
approach, MTF (and other alternate 
concepts) will never have a chance to 
reach technical maturity.
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