Sandia National Laboratories

1 Dec 2010

Pulsed Power Inertial Fusion Energy

Fusion Power Associates

31st Annual Meeting and Symposium

Michael Cuneo, et al

Pulsed Power Sciences Center, Sandia National Laboratories in collaboration with our colleagues at Sandia National Laboratories

> Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

At a high level, all IFE power sources have five major elements

The diversity of drivers, targets, coupling methods, chamber technologies requires *close scrutiny* of systems interface/integration issues

Drivers	Coupling
Pulsed power magnetic pressure Pulsed power x-rays Fast Ignition Laser Heavy Ion Accelerator DPSSL Laser KrF Laser	Conductor transport-conductor recycling Beam transport-inverse diode Beam transport-space-charge-neutralization Photon transport-target-injection-tracking

Targets	Chamber and Blanket
Direct-drive fast-ignition	Thick liquid wall
Direct-drive hot-spot ignition	Vaporizing blanket
Indirect-drive fast-ignition	Wetted wall
Indirect-drive hot-spot ignition	Dry wall with gas fill
Other advanced concepts	

- IFE has separability built into it from the start (attractive compared to MFE)
- System integration is not trivial
- It is imperative to optimize at a system level, not just at a sub-system level
- Efficient coupling needs to be demonstrated and is hard for all options

Pulsed power concepts allow thick liquid wall for long lifetime but require recyclable transmission lines

Drivers	Coupling
Pulsed power magnetic pressure	Conductor transport-conductor recycling
Pulsed power x-rays	Beam transport-inverse diode
Fast Ignition Laser	Beam transport-space-charge-neutralization
Heavy Ion Accelerator	Photon transport-target-injection-tracking
DPSSL Laser	
KrF Laser	

Targets	Chamber and Blanket
Direct-drive fast-ignition	Thick liquid wall
Direct-drive hot-spot ignition	Vaporizing blanket
Indirect-drive fast-ignition	Wetted wall
Indirect-drive hot-spot ignition	Dry wall with gas fill
Other advanced concepts	

- Direct connection of driver-target
 - simple in concept for low rep-rate, can it be engineered, can yield be high enough?
 - needs to economic, thus recyclable, is this feasible?
 - Ionger lifetime chamber designs with larger yields?

This system of systems must meet a large number of demands

Performance	Cost/Schedule	System Engineering	Policy and Politics
Energy rich	Low cost	Reliability	Ease of licensing
High gain	Credible, rapid, development path	Availability	Public acceptance
Efficient	Affordable development path	Maintainability	Acceptabilty of local or global environmental impact
Scalable/flexible	Credible, rapid, deployment path to mass production	Inspectability	No evacuation plan
Robust	Affordable deployment path to mass production	Manufacturability	No high-level waste
Closed, on-site fuel cycle	Management of R and D risk	Disposability	Financing
Sufficient rep-rate		Usability	Safety analysis
Handling of high fusion yields		Mass-producability	Infrastructure development
		Suppliability	_

The first IFE z-pinch study (2004-2006) proposed 10 target chambers at 100 MWe per chamber

3 GJ yield per chamber RR = 0.1 Hz per chamber 300 MWth, 100 MWe/chamber RReff = 1 Hz Total power = 1 GWe

31,560,000 RTL's & targets/year

- C.L. Olson et al identified the science issues of repetitive drivers, recycled transmission lines, thick liquid wall target chambers
- We concluded 10 units are not practical or economic too much steel for RTL's, need higher target yield, system efficiency, and wall plug gain

6

What is new?

- Indirect drive targets:
 - Gwall ~1 (400 MJ yield) required two 60 MA, 60 ns drivers
 - IFE would require >3 GJ yields at RR = 1 Hz
 - Required 7.2 to 8.6 MJ absorbed at capsule
 - Required 40 to 100 MJ z-pinch x-ray sources
 - Gave 4.6 GJ yields
 - But required a 100 MA or two 150 MA drivers
- Direct drive targets:
 - Higher efficiency target concepts (25X)
 - Higher efficiency driver concepts (2X)
 - 5-10 MJ absorbed energy in target with single 60 MA driver
 - Possibly quite compact Z-sized (7800 ft²) to 10 x Z (85,000 ft²)
 - Higher thermal efficiency cycles (Brayton or Brayton-Rankine)
 - Require G = 500 1500, RR = 0.1 Hz for economic IFE
 - 1/10th number of RTL's and targets at 0.1 Hz

'Out with the old'

LTDs (Linear Transformer Drivers) are the greatest advance in prime power generation since the invention of the Marx (1924)

- Double electrical efficiency of conventional architecture (70%)
- Random failure rate of low voltage switches is better than 7 x 10⁻⁶
- Components have shown 13,000 to 37,000 shots (1.5 to 4.3 days) with no failure

Tests of a 1 TW rep-rate module are planned at 0.1 Hz at the required energy and technology scale

Prototype costs are: \$11/Joule ~10⁻⁴ cents/peak watt

- 1 MA, 0.2 TW, 25 kJ, two cavity tests planned in FY2011
 - Fire 40,000 shots (= 1,600,000 switch firings) at 6 shots/minute with resistive load
 - Engineer and test a replaceable transmission line system
 - 1 MA, 1 TW, 125 kJ, 10 cavity test planned to follow
- ZR was built for 4\$/J. This technology scales more favorably.
- Gen 3 LTD designs have 80% peak current with 50% cavity radius

W. Stygar et al., Phys. Rev. ST-AB (2007)

LTD modules are integrated into efficient, low cost, compact, high yield scale pulsed power systems

Both systems can deliver 10 to 20 MJ to target regions

These accelerators consist of capacitors, switches, oil, water, plastic, stainless steel, and air

Concept of operations would allow module replacement during continuous high yield operation

Module Section 210 to 500 modules Low radiation area 40 m Water Section Passive pulseshaping & symmetrization Radiation shield

Repetitive connection of driver and target is achieved by replacing a Recyclable Transmission Line (RTL) at 0.1 Hz

- RTL and the targets are a low mass (<50 kG), low cost, portable vacuum system
- Recyclable so the process can be economic.
- RTL provides coupling of driver and target even with chamber debris from previous event; chamber clearing not required
- RTL can be shaped to shield direct line of sight to driver

There are a number of science and engineering challenges for RTL driver-target coupling

- An applied science and technology R and D program is needed
- The "ilities": manufacturability, maintainability, reliability, affordability, disposability, usability, availability

M. Sawan, L. El-Guebaly et al., FST (2007)

Liquid walls and vaporizing blankets could drastically reduce the materials issues that a fusion power plant will face

- Direct connection with pre-pumped, mechanically-rigid RTL allows thick liquid wall
- Ongoing calculations to determine optimal shielding configuration
- Neutronics: 40 year lifetime chamber
- 15 Initial point design: cyclic material fatigue: 7 year lifetime

Prototype RTL's were manufactured by metal spinning and buckling strengths were measured and modeled

Other materials, other fabrication techniques

B. Cipiti et al. SAND-2006-7399P (2006)

RTL's can be fabricated economically – up to \$15/shot can be spent on RTL's and targets at >10 GJ and 0.1 Hz

- Nuclear plants raw fuel costs ~ \$3.50 to \$5.50 per MWhr_e
- Coal ~ \$10 to \$13.20 \$/MWhr_e
- Only 5 to 10% of COE results from RTL and target costs
- 2 week inventory (3000 metric tons), yearly throughput (<190,000 metric tons) and a second sec
- Need to develop design of full scale production line with industry (SCHULER) aboratories

We will manage IFE R and D with Technology Readiness Levels

System	TRL level	Achievement (by 2014)
	completed	
LTD Cavity	5	Prototype module costs ~ 11\$/Joule
Switches	5	3,000,000 to 9,000,000 shot lifetime (1 to 3
		years)
Driver	5	1 TW sub-scale module testing complete at 2-6
Module		shots/min
		40,000 shots with no failure (~ 5 days)
RTL's	4	Prototype system demonstrated on sub-scale
		module at sub-speed for 100 shots
		Conceptual designs for economic RTL mass
		production factory
Target	5	$Q \sim 0.5$ to 1 DT implosions on Z
		Cryogenic implosions
		High gain target designs (>5 GJ) and validated
		simulations
Chamber	4	Preliminary thick-liquid wall designs
		Scaled hydrodynamic shielding experiments
Breeding	3	Preliminary design of tritium recovery system
Balance of	5	Preliminary design of Brayton cycle system for
Plant		inertial fusion energy with primary loop of
		molten salt
Net TRL	4	

 Subsystems mature enough to integrate into a viable IFE system have a TRL of 6

Cost of electricity models put requirements on the product of target gain and rep-rate (*G*RR***)**

- Escalate TCC = 2 x based on MIT nuclear study
- Cost of \$ = 7.8% based on MIT nuclear study
- Learning curves and 10th-of-a-kind units for fusion power economy could lower COE by 30%

Large yields and low rep-rate may be an attractive path for Inertial Fusion Energy

The logic of the integrated system is compelling

- Compact, efficient, low cost, long-lifetime, repetitive driver
- Advanced, efficient, low cost, robust targets, that are simple to fabricate
 - → Very large absorbed target energies
- Wery large fusion yields
- Allows low rep-rate
- RTL coupling is feasible, engineering development required
- Thick-liquid-wall and vaporizing blanket for long lifetime chamber
- Shielding of line of sight to the driver

Key enabling physics: magnetically-driven-targets Key enabling technologies: LTD's and RTL's

IFE diversification

- Many possible IFE systems (1000's)
- Don't up-select too early:
 - Magnetically-driven implosions and pulsed power could be a breakthrough
 - Diversify the risk portfolio for national IFE plan. Diversification is in the national interest.
- Diversification, formally: for a given level of expected return, a portfolio minimizes total variance by diversifying amongst assets with poorly correlated risks.
- Technology adoption lifecycles require 40 years for significant market penetration (25% market share)

