A Path to a Fusion DEMO as a Next Step After ITER

A.M. Garofalo, V.S. Chan, R.D. Stambaugh, T.S. Taylor

FUSION POWER ASSOCIATES 32nd Annual Meeting and Symposium

December 14-15, 2011 Washington, DC 20023

In Addition to What We Learn in ITER, What Else Do We Need to Learn to Build an Electricity Producing DEMO?

Tokamaks Have Made Excellent Progress in Fusion Power

- JET: 16 MW, 0.68 GJ fusion energy
- TFTR: 10.7 MW, 1.55 GJ fusion energy
- Worldwide research efforts since 2000 have focused on building ITER, to carry actual fusion power output up to reactor scale
 - Q=10 in 2030

In Addition to What We Learn in ITER, What Else Do We Need to Learn to Build an Electricity Producing DEMO?

US MFE Community – Remaining Gaps to DEMO Have Been Identified

2007 FESAC Planning Panel

Mow Initiatives Could Address Gaps Legend Major Contribution Significant Contribution Minor Contribution No Important Contribution	G-1 Plasma Predictive capability	G-2 Integrated plasma demonstration	G-3 Nuclear-capable Diagnostics	G-4 Control near limits with minimal power	G-5 Avoidance of Large-scale Off- normal events in tokamaks	G-6 Developments for concepts free of off-normal plasma events	G-7 Reactor capable RF launching structures	G-8 High-Performance Magnets	G-9 Plasma Wall Interactions	G-10 Plasma Facing Components	G-11 Fuel cycle	G-12 Heat removal	G-13 Low activation materials	G-14 Safety	G-15 Maintainability
I-1. Predictive plasma modeling and validation initiative	3	2		2	2	3	1		2						
I-2. ITER - AT extensions	3	3	3	3	3		2		2	2	1	1		1	1
I-3. Integrated advanced physics demonstration (DT)	3	3	3	3	3	1	3	2	3	3	1	1	1	1	1
I-4. Integrated PWI/PFC experiment (DD)	2	1		1	2		2	1	3	3	1	1		1	1
I-5. Disruption-free experiments	2	1		2	1	3		1	1	1					
I-6. Engineering and materials science modeling and experimental validation initiative							1	3	1	3	2	3	3	2	1
I-7. Materials qualification facility							1			3	2	1	3	3	
I-8. Component development and testing			1				2	1		3	3	3	2	2	2
I-9. Component qualification facility	1	1	2	1	2		3	2	2	3	3	3	3	3	3

2009 Research Needs Workshop

US MFE Leadership -

- > Towards a Fusion Nuclear Science Facility
 - Burning Plasma Dynamics and Control
 - Materials in a Fusion Environment and Harnessing Fusion Power

Appropriate Size of Next Step Forward?

 FNSF choices lie on continuum between present program and DEMO [Ray Fonck, EPRI 2011]

Options for the Fusion Nuclear Science Facility

- **FNSF-ST** (larger step to DEMO)
 - Operate steady-state
 - High neutron fluence for component testing
 - Provide a materials irradiation facility to test/validate fusion materials
 - Demonstrate Tritium breeding
 - Show fusion can produce high grade process heat and electricity

• FNSF-AT adds:

- Produce significant fusion power (100-300 MW)
- Demonstrate Tritium self-sufficiency
- Further develop AT physics towards Demo regimes
- **Pilot Plant** (larger step from present program) adds:
 - Generate net electricity
 - Reactor maintenance schemes

Appropriate Size of Next Step Forward?

 FNSF choices lie on continuum between present program and DEMO [Ray Fonck, EPRI 2011]

- **FNSF-AT can be designed now and operate in parallel with ITER**
- Readiness for DEMO construction triggered by Q=10 in ITER (~2030)

Nuclear Science Mission Can Be Accomplished by FNSF-AT Baseline Mode with Operating Margin

- Baseline FNSF-AT: 4x neutron flux of ITER and annual duty factor of 30%
 - 10x neutron fluence of ITER
 - Materials/components qualification for first few years of DEMO

			Baseline	Lower BetaN, fbs, H98	Lower BT, fbs	Advanced
Α	aspect ratio		3.5	3.5	3.5	3.5
k	plasma elongation		2.31	2.31	2.31	2.31
Pf	fusion power	MW	290.07	159.07	144.65	476.44
Pinternal	power to run plant	MW	499.75	526.57	348.22	500.35
Qplasma	Pfusion/Paux		6.88	2.93	3.52	12.37
Pn/Awall	Neutron Power at Blanket	MW/m2	2.00	1.10	1.00	3.28
BetaN	normalized beta	mT/MA	3.69	2.65	3.69	4.50
fbs	bootstrap fraction		0.75	0.54	0.56	0.85
lp	plasma current	MA	6.60	6.56	6.39	7.09
Bo	field on axis	T	5.44	5.44	3.90	5.44
Paux	Total Auxiliary Power	ww	42.16	54.22	41.11	38.53
Peak Heat Flux	Peak Heat Flux to Outer Divertor	MW/m2	6.70	6.83	5.19	7.26

Nominal parameters for some of the operating modes evaluated from a 0-D system optimizer model [Chan, Stambaugh, et al, FS&T (2010)]

AT Physics Enables Nuclear Mission at Modest Size

AT physics enables steady-state burning plasmas with

>10x ITER neutron fluence

High fluence is required for FNSF's nuclear science development objective

• in compact device

Moderate size is required to demonstrate TBR>1 using only a moderate quantity of limited supply of tritium fuel

FNSF Must Have Tritium Breeding Ratio > 1 to Build a Supply to Start Up DEMO

- A 1000 MWe DEMO will burn 12 kg Tritium per month
- Tritium inventory available for DEMO at end of ITER and FNSF operation depends strongly on TBR in FNSF

[M.E. Sawan, TOFE (2010)]

Demountable Copper Coils Enable Effective Nuclear Science Progress

- A Fusion Nuclear Science Facility must be a research device, maintainable, accessible, re-configurable
 - Change device components as understanding evolves
- Jointed copper coil enables changeouts of wall, blanket, divertor
 - Other devices will address superconducting coil issues

Sliding Joint (C-mod)

Sawtooth Joint (Rebut)

Titus et al. SOFE (2009)

A Staged Approach to Learn and Improve Nuclear Components, Diagnostics, Operating Scenario

		1	2	3	4	5	6	7	8	9	10	11	12	13	3 14	15	16	17	18	19	20	21	22	23
		←START UP→ H D DT				FIRST MAIN BLANKET							S	SECOND MAIN BLANKET							THIRD M BLANK			IN F
	Fusion Power (MW)	0	0	1:	25	12	5		2	50			25	50		2	50			25	0		4	00
	P _N /A _{WALL} (MW/m ²)				1	1				2			2				2			2)		3	.2
	Pulse Length (Min)	1		1	0	S	S		S	SS			S	S		S	SS			S	S		S	S
	Duty Factor	0.0	1	0.	04	0.	1		0	.2			0.	2		0	.3			0.	3		0	.3
	T Burned/Year (kG)			0.	28	0.7	7		2	.8			2.	8		4	.2			4.	2			5
	Net Produced/Year (kG)					-0.	14		0.	56			0.5	56		0.	84			0.8	34			1
	Main Blanket	He	e Co	oole Fe	ed S rriti	Solid Breeder ic Steel						Dua F	l C Feri	oola ritic	nt P Stee	b-Li I			В	est R/	of T AFS	BM ?	S	
	TBR					¦0.8	}		1	.2			1.	2		1	.2			1.2	2		1	.2
	Test Blankets					 	1	,2					3	<u>3,4</u>	-	5,6				7	,8	+ (9,1()
	Fluence (MW-yr/m ²)			0	.06	 			1	.2						3	.7						7.	6
Radia surviv	Nuclear facing structures do not see more tha 2 MW-yr/m2 (20 dpg) before removal													an										

A Staged Approach to Learn and Improve Nuclear Components, Diagnostics, Operating Scenario

	1 2 3 4				5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	€ST. Η	AR D	T UF D	°► T		FIRS BL/	ST N Anf	IAIN (ET				S	ECO BL)ND ANK	MA ET	IN				THIRD MA BLANKE			IN F
Fusion Power (MW)	0	0	12	25	12	25		2	50			25	0		2	50			25	0		4	00
P _N /A _{WALL} (MW/m ²)			•	1	1				2			2)			2			2	2		3	.2
Pulse Length (Min)	1		1	0	S	S		S	SS			S	S		S	SS			S	S		S	S
Duty Factor	0.01	I	0.	04	0.	1		0	.2			0.	2		0	.3			0.	3		0	.3
T Burned/Year (kG)			0.	28	0.	7		2	.8			2.	8		4	.2			4.	2		ļ	5
Net Produced/Year (kG)					-0.14 0.56			56			0.5	56		0.	84			9.0	34			1	
Main Blanket	Не	Сс	oole Fei	ed S rriti	olid Breeder c Steel							Dua F	l Co erri	olar tic S	nt P Stee	b-Li I			В	est R	of T AFS	BM: ?	S
TBR					0.8	3		1	.2			1.2 1.2				.2			1.2	2		1,	.2
Test Blankets					1	•	1,2					3.4 5.6						7	',8	, (9,10)	
Accumulated					. <u> </u>									i		_					1		
Fluence (MW-yr/m ²)			0.	.06	 			ו	.2						3	.7						7.6	ô
nostics development IT esting: se						lik tar	e t)					Reduced set							DE	M: S	0- set	e	

Diag and

FNSF-AT Can Be Designed Using Proven AT Physics, Can Develop More Advanced Physics Towards DEMO

- 100% non-inductive modes developed on DIII-D bracket FNSF-AT baseline
 - Negative central magnetic shear
 - High bootstrap fraction
 - Near-stationary profiles

Pulse length extension in next few years

FNSF-AT Can Be Designed Using Proven AT Physics, Can Develop More Advanced Physics Towards DEMO

- 100% non-inductive modes developed on DIII-D bracket FNSF-AT baseline
 - Negative central magnetic shear
 - High bootstrap fraction
 - Near-stationary profiles

Pulse length extension in next few years

- Baseline FNSF-AT to meet
 nuclear science mission
- More advanced scenarios to close physics gaps to DEMO

Can Start FNSF-AT Design Now

- Shovel-ready:
 - Standard coils
 - Standard NBI
 - Standard divertor
 - Proven AT physics
 - Proven materials
- Concept is open to new advances:
 - Demountable superconducting coils
 - Snowflake, SX divertor
 - Negative NBI technology
 - Advanced materials

Soukhanovskii, et al., IAEA 2010

Complementary Research on FNSF-AT, ITER, SC Tokamaks, and Materials Irradiation Facilities Enables DEMO

The Physics Basis for FNSF-AT Can Be Available from Experiments and Simulation in the Next Few Years

- Required stability values achieved in 100% non-inductive plasmas (extend pulse length)
- RWM stabilization by rotation/kinetic effects
- NTM stabilization by ECCD
- ELM elimination by QH mode operation, RMPs
- Disruption avoidance and mitigation
- Confinement quality required already obtained in long pulse DIII-D plasmas
- Bootstrap fraction already achieved
- Far off-axis LHCD in high density H-mode
- Pumped, high triangularity plasma
- Plasma control system
- Power exhaust: more challenging than DIII-D and comparable to ITER
- PFC tritium retention oxygen bake and hot wall

FNSF-AT Will Get Us Ready For DEMO Construction Triggered By Q=10 in ITER

Key features of the FNSF-AT approach:

- FNSF-AT is on direct path towards attractive DEMO
- FNSF-AT plus ITER fill gaps to DEMO
- Ready to design FNSF-AT now

A Fast Track Plan to Get to a Net Electric DEMO

	16	17	18	19 2	2020	21	22	23	24	25	26	27	28	29	2030	31	32	33	34	35	36	37	38	39	2040
ITER Key Schedule Elements				•Fir	st Plas	sma						• DT			• Q=1()									
Fusion Nuclear Science Facility (FNSF) and P	rogra	m																							
Commissioning Operation (H, D, DT pulsed)																									
Show Significant Steady-State Fusion Power																									
Helium Cooled Ceramic Breeder Blanket														1											
Show Fusion Can Produce Its Own Fuel																									
Produce High Grade Process Heat From Fusion		ļ											1												
Show Fusion Can Produce Electricity													l		\mathbf{h}										
Dual Coolant Lead Lithium Blanket		<u></u>												1			<mark>.</mark>								
Oxide Dispersion Strengthened Ferritic Steel B	lanke	t																							
Operate a Blanket With DEMO Relevant Irradia	ition L	ifetim	es											I	۱ ۱										
Field Plasma Diagnostics Suitable for a Power I	Plant																								
Fusion Materials Irradiation and Developmer	nt Pro	gram	0													1		•••••							
Materials and Full Components Irradiation in F	NSF												:												
Accelerator Based Lifetime Irradiation Data		• Init	ial Da	ta								• Dat	a on C	DS Fe	erritic S	teel f	r DE	MO							
Triple Ion Beam Facility	• Da	ta on (ODS F	erritic S	Steel									_											
Fission Reactor Irradiations																	J.								
Net Electric DEMO Power Plant (1000 MWe)		¢					• Initi	ate D	esign						•Build		•[Blanke	t Dec	ision			• Ope	ration)

DEMO design initiated by first plasma in ITER. DEMO construction triggered by Q=10 in ITER, first phase accomplishments in FNSF, and materials data on ODS Ferritic Steel. FNSF enables choice between two most promising blanket types for DEMO.

