Heavy Ion Fusion Pathway

B. Grant Logan

Director, U.S. Heavy Ion Fusion Science Virtual National Laboratory, (HIFS-VNL) - collaboration of LBNL, LLNL, and PPPL heavy ion research

Fusion Power Associates Annual Meeting

Washington DC

December 14-15, 2011

*This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Berkeley and Lawrence Livermore National Laboratories under Contract Numbers DE-AC02-05CH1123 and DE-AC52-07NA27344, and by the Princeton Plasma Physics Laboratory under Contract Number DE-AC02-76CH03073.

Heavy Ion Fusion Science Virtual National Laboratory

NDCX-II construction is nearing completion (ARRA March 2012). First beam tests (5-cells) meet minimum project acceptance goals.

The DOE Office of Science/ Fusion Energy Science includes driver-target coupling and advanced target physics *to enable heavy ion fusion. This program is part of inertial fusion energy science (IFES).*

Jan 29, 2011- We presented to NAS a requested R&D plan based on *presumed success of NIF*: three R&D phases to an HIF-IFE Demo:

- PHASE I: 5 years x ~40 M\$/yr: Integrated single beam accelerator experiments on NDCX-I and NDCX-II (extended with more cells), dynamic vacuum control experiments on HCX @ 5 Hz, scaled liquid chamber experiments, sub-ns planar shock experiments on NDCX-II, and HIF target design for indirect drive, direct drive shock, and X-target HIF options.
- Deliverable: validation of heavy ion accelerator and implosion experiment design for Phase II, and for choice of target for Phase II.
- PHASE II: Next 10 years x ~60-180 M\$/yr: Heavy-Ion-Driven Implosion Experiment (HIDIX): a 10-kJ-scale, multiple beam accelerator prototype which drives first cryo D₂ target implosions and 5 Hz bursts of injected symcaps to learn precision pointing, balance, timing, etc. Includes supporting liquid chamber, target fabrication, and injection R&D for 5 Hz.
- → Deliverable: validation of approach to multi-beam accelerator and target for HIF ignition tests, using an accelerator designed for 5 Hz operation.
- PHASE III: (>20 years) Construct 2-3 MJ HIF ignition test facility for single shot tests, then burst mode, using accelerator at 5 Hz. If successful, then add nuclear systems to upgrade to 150 MW ave. fusion power level HIF-IFE DEMO.

→Its not premature to consider a "Plan B" that allows more time to assess NIF results and to make progress with more modest near-term budgets.

Phase I: Next five year goals (more affordable plan B strawman)

- →<u>Strategy</u>: focus limited effort on selected HEDLP topics that are common to both recommended HEDP science as well as enabling heavy ion fusion targets.
- →HEDLP: the 2009 Fusion Energy Science Advisory Committee (R. Betti) report "Advancing the Science of High Energy Density Laboratory Plasmas" emphasized science needs in areas relevant to heavy ion fusion; (1) <u>HED</u> <u>Hydrodynamics (including advanced, high gain targets), (2) Intense Beam</u> <u>Physics, (3) Magnetized HED plasmas, and (4)Warm Dense Matter.</u>
- →<u>5 year goal</u>: Utilize NDCX-II and develop joint collaborations between the US HIFS-VNL and GSI-FAIR (present MOA to be updated), and with other willing partners, e.g., LANL'S LANSCE-PSR (MOA draft working up LANL management), to leverage use of existing facilities and to make more rapid scientific progress through shared diagnostics and modeling.
- →Plan B Budget requirement: modest growth of HIFS-VNL budget from present
 7.7 M\$/yr to ~16M\$/yr, including support for joint collaborations.

X-target discovery: single-sided beam illumination *along z-axis* can compress fuel *quasi-spherically in radius* to rho-r > 2 g/cm² for high gain!

Lowest convergence (~5) of fuel required for any 2-D high gain IFE target→ maybe more robust to hydro instabilities and mix ←key!
Highest gain (> 200) and yield (> 1GJ) for any HIF target in 2D design → enables simple gravity-cleared liquid chambers at low pulse rates ~ 1 Hz

 Highest range accepted for ions → lowest beam currents in accelerator

 Single sided beam illumination with < 10 degree envelope half-angle for final focus array→ simplifies driver-chamber interface and beam manipulations

Simple low precision metal case with liquid
 DT fill → easy fabrication tolerances and low cost

Challenge: how can the HIF program get <u>experimental</u> data related to X-target physics over the next 10 years?

Heavy Ion Fusion Science Virtual National Laboratory

NDCX-II can explore more intense beam compression to sub-ns pulses relevant to shocks and HIF target physics

- 11 M\$ construction began July 2009, to be completed in March of 2012 (ARRA project)
- Rapid initial bunch compression allows re-use of 70-ns pulsed power sources from the ATA accelerator, and compressed to sub-ns.
- Detailed 3-D simulations using the Warp code confirmed the physics design & set engineering requirements
- rapid initial bunch compression could reduce front end length and cost for HIF drivers

Entering final compression

lon species	K+ (A=39)	Li+ (A=7)
lon energy	300-400 keV	(1.2 MeV) → > 4 MeV
Focal radius	1.5 - 3 mm	(0.5 mm)
Pulse duration	2 - 4 ns	~(1 ns) → < 200ps
Peak current	~ 2 A	~ (10 A) → > 100 A

Ref: A. Friedman, et al., Phys Plasmas, 2010)

Heavy Ion Fusion Science Virtual National Laboratory

NDCX-II (baseline)

Simulations show potential of NDCX-II to compress pulses to a few hundred ps, motivating experiments related to shock or fast ignition

Last month (Oct.31) FAIR Scientific Director Boris Sharkov was invited by the US NAS panel meeting in Washington DC *to present research in Europe and Russia related to Heavy Ion Fusion.* G 5 1 **Under construction**completion ~2018 Observers FAIR Austria China Finnland France Germany Greece India Italy Poland Slovakia Slovenia Spain Sweden Romania Russia UK

Scientific Director Sharkov appealed to the NAS for US to consider FAIR

Sharkov suggested as little as a few M/yr* could support US as a FAIR user. *plus contributions in kind provided by US domestic R&D

Heavy Ion Fusion Science Virtual National Laboratory

<u>Topic 1: HED Hydrodynamics</u>. Idea below is expressed by juxtaposing clips extracted from 3 slides of Prof. Dr. Sharkov's presentation to the US National Academy October 31, 2011:

Slide 11

There are three basic classes of heavy ion fusion target options. No downselection is planned until NIF data is completed and assessed.

- Indirect drive (2-sided hohlraum) 2-D Lasnex design (2002): 7 MJ, 3& 4 GeV Bi⁺¹, gain 68. <u>Two-sided illumination, like NIF</u>.
- Polar direct drive 1-D Lasnex design (2010): 3 MJ, 3 GeV, Hg⁺¹ ion beams, gain ~150. Future 2-D design planned for polar drive illumination, with tamper & shock ignition assist.
- X-target single-sided direct-drive 2-D Hydra design(2011) [Henestroza, Logan & Perkins, Phys. of Plasmas 18 (2011)] Gain 50 @ 6 MJ, range ~1 g/cm² ions. Now, with an aluminum pusher→ gain> 400 with 3 MJ of 2 g/cm² range ions.

→All three options are intended to use multiple-beam linac drivers with thick-liquid-protected chambers to mitigate material neutron damage risks.

The X-target accepts ions with range 70 times higher than for either indirect drive or direct drive (hot-spot ignition) targets
 → enough to reconsider candidacy of RF accelerators as heavy ion drivers
 → can tap predominant RF accelerator expertise of the world

Example of a high current front end HI-RF linac design from previous 2004 heavy ion accelerator workshop for <u>HEDP</u>

Ring Beam

Interdigital H-mode resonator configurations

The RF Linac Group John Staples, Andy Sessler, Joe Kwan, Rod Keller, LBNL Paul Schlossow, Tech-X Peter Ostroumov, ANL Wieren Chou, FNAL Bill Herrmannsfeldt, SLAC

Planar Beam

|--|

Conclusions:

- We presented a three phase plan for development of heavy ion fusion to the NAS in January, with budget requirements and decision criteria, that presumed ignition in NIF.
- Target physics affects target designs that set requirements for heavy ion accelerator drivers.
- We are developing a more modest Plan B to allow more time to assess NIF results, optimize heavy ion target designs, and to make progress possible under more constrained budgets.
- NDCX-II can address many key beam-target coupling physics over the next 5 years with 0.1 J sub-ns ion pulses.
- Over the next 10 years, we have opportunity to consider kJ-scale heavy ion beam target experiments using the FAIR facility now under construction at GSI.

