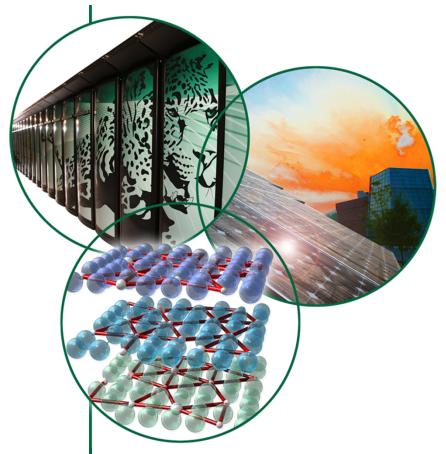
Fusion Nuclear Science Facility (FNSF), Accompanying R&D and Required Capabilities

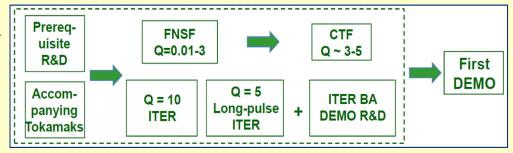

Martin Peng (ORNL, UT-Battelle)

Acknowledgement:

Gerald Navratil (Columbia U)
Mohamed Abdou (UCLA)
Jean Paul Allain (Purdue U)
Jeff Brooks (Purdue U)
Vincent Chan (GA)
Ray Fonck (U Wisconsin-Madison)
Stan Milora (ORNL)
Juergen Rapp (ORNL)
Roger Stoller (ORNL)

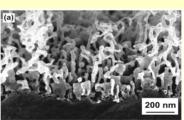
Fusion Power Associates Annual Meeting and Symposium

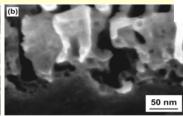
December 14-15, 2011, Washington, DC

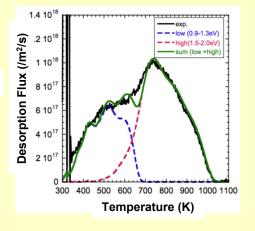



FNSF provides the environment to develop database for fusion materials in action

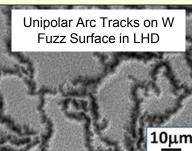

- FNSF mission: Provide a continuous fusion nuclear environment of copious neutrons, to develop experimental database on nuclear-nonnuclear coupling phenomena in materials in components for plasma-material interactions, tritium fuel cycle, and power extraction.
- Wide time and size scales of synergistic phenomena: ps to year, nm to meter, involving all phases of matter.
- <u>R&D cycle</u>: Test, discover, understand, improve / innovate solutions, and retest, until experimental database for DEMO-capable components are developed.
- Complement ITER objectives and prepare for CTF in ITER era:
 - Low Q (≤ 3): **0.3** x ITER
 - *Neutron flux* ≤ 2 *MW/m*²: **3 x**
 - Fluence = 1 MW-yr/m²: **5** x
 - t_{pulse} ≤ 2 wks: 1000 x
 - Duty factor =10%: 3 x


Example: fusion nuclear-nonnuclear coupling effects involving plasma facing material and tritium retention

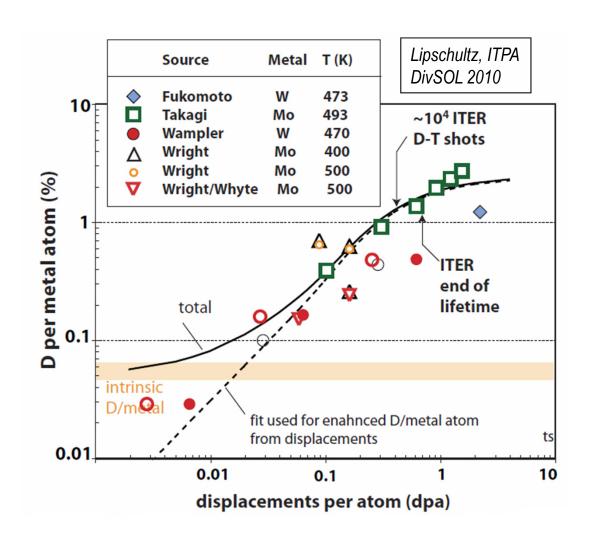

- W, a promising Plasma Facing Material
 - Low H permeation / retention
 - Low plasma erosion
 - DEMO-relevant temperatures
- Worldwide R&D: Nano-composites;
 Nano-structure alloy; PFC designs, etc.



- Nuclear-nonnuclear coupling in PFC:
 - Plasma ion flux induces tritium (T) retention
 - Up 10x @ 2 dpa (W⁴⁺ beam) @ high temp [Wright, NF, 2010]
 - Up 40% @ 0.025 dpa (HFIR neutrons) [Shimada, JNM, 2011]
 - ⇒ additional T trapping sites in material bulk
 - He induced W "fuzz" with He bubbles can trap T

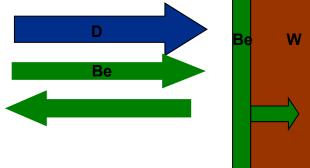


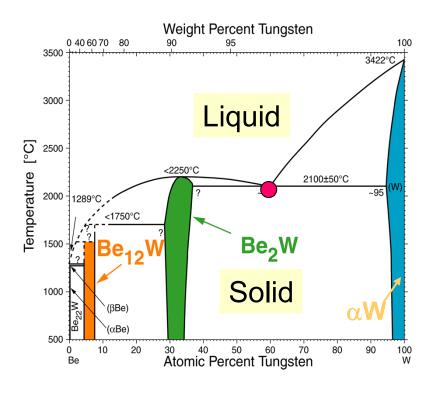
[Kajita, NF, 2009]



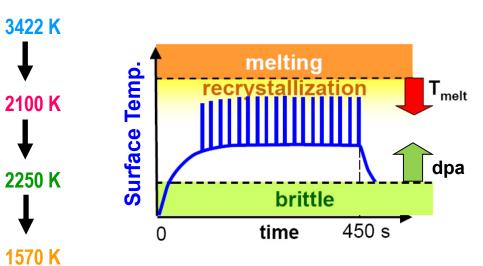
- ⇒ W dust exfoliated by unipolar arcs on fuzz [Tokitani, NF, 2011]
- ⇒ Large surface erosion & T retention in W dust
- Need tests in correct environment to develop solutions.

Example: neutron damage in refractory metals


- Interstitials, vacancies, clusters of those, dislocation loops, voids, dynamics of these
- Hydrogenic retention
- Thermal conductivity (in particular for carbon based materials)
- Chemical composition (e.g. transmutation)
- Micro-structural changes (e.g. swelling)
- Mechanical properties (e.g. DBTT, He embrittlement)



➤ Suggest the need to test neutron irradiated samples up to 10 dpa at least.


Example: adding Be-W chemistry to the mix requires an integrated testing environment

→ enhanced W-sublimation / erosion?

Melting point is reduced with increasing Be concentration:

➤ How do high fluxes and thermal loads influence intermixing and alloying, in presence of increasing neutron damage?

R&D and Capabilities required by this mission

Accompanying R&D: to increase Mean Time Between Failure (MTBF) of test components

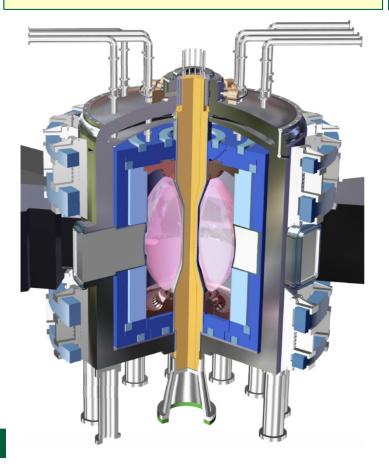
Development of qualified internal component options, including

- **Test divertors**, blankets, T breeders, FW, NBI, RF launchers, diagnostic systems, TF center post (for ST)
- Components to control plasma dynamics, H&CD, fueling, I&C
- Instrumentation for these

FNSF Capabilities: to increase duty factor and fluence, reduce Mean Time to Replace or Repair (MTTR)

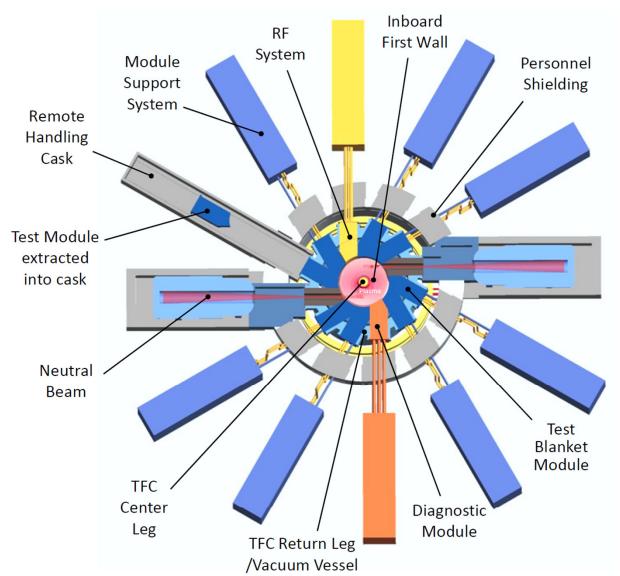
- Reliable plasma operation with limited disruption, ELM, and impact
- Remote handling (RH) of modularized test components
- Hot cell facilities and laboratories, pre- and post-test investigation systems and tools.
- Device support structure and systems behind test modules and shielding – long facility life and upgradability to CTF mission.

FNSF-ST, assessed to have good potential to provide the facility capability required in progressive stages


- $R_0 = 1.3m$, A = 1.7
- $H_H \le 1.25$, $\beta/\beta_N \le 0.75$, $q_{cvl} \ge 4$
- $J_{TF-avg} \le 4kA/cm^2$
- Mid-plane test area ≥ 10m²
- Outboard T breeder ~ 50m²

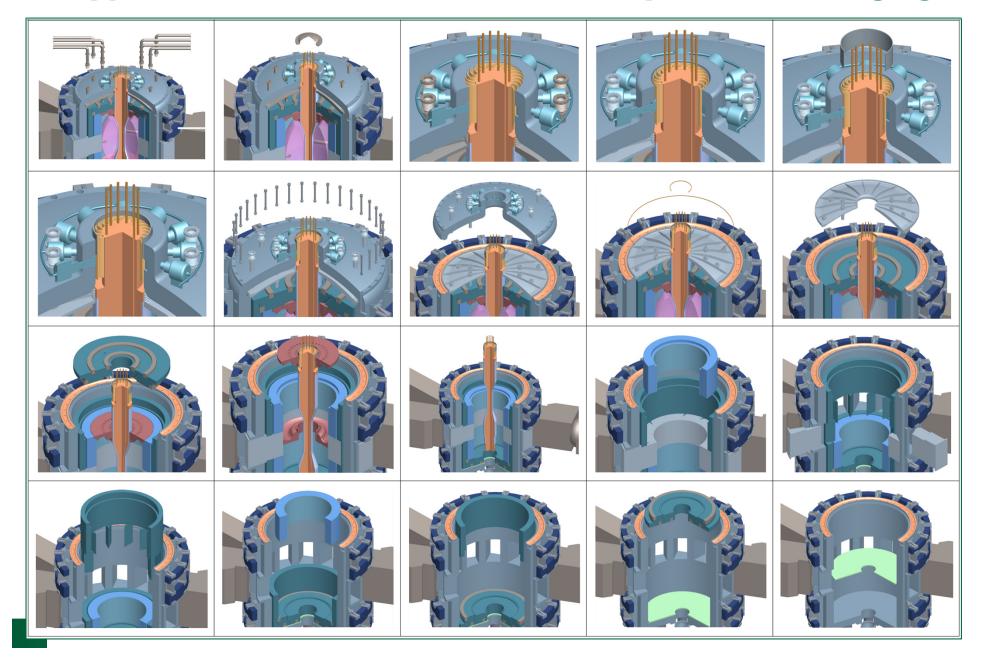
I-DD: 1xJET, verify plasma operation, PMI/PFC, neutronics, shielding, safety, RH system

II-DT: 1xJET, verify FNS research capability: PMI/PFC, tritium cycle, power extraction


III-DT: 2xJET, full FNS research, basis for CTF

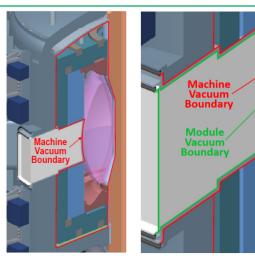
IV-DT: 3xJET, "stretch" FNS & CTF research

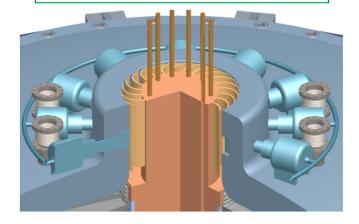
Stage-Fuel	I-DD	II-DT	III-DT	IV-DT
Current, I _p (MA)	4.2	4.2	6.7	8.4
Plasma pressure (MPa)	0.16	0.16	0.43	0.70
W _L (MW/m ²)	0.005	0.25	1.0	2.0
Fusion gain Q	0.01	0.86	1.7	2.5
Fusion power (MW)	0.2	19	76	152
Tritium burn rate (g/yr)	0	≤105	≤420	≤840
Field, B _T (T)	2.7	2.7	2.9	3.6
Safety factor, q _{cyl}	6.0	6.0	4.1	4.1
Toroidal beta, β_T (%)	4.4	4.4	10.1	10.8
Normal beta, β_N	2.1	2.1	3.3	3.5
Avg density, n _e (10 ²⁰ /m ³)	0.54	0.54	1.1	1.5
Avg ion T _i (keV)	7.7	7.6	10.2	11.8
Avg electron T _e (keV)	4.2	4.3	5.7	7.2
BS current fraction	0.45	0.47	0.50	0.53
NBI H&CD power (MW)	26	22	44	61
NBI energy to core (kV)	120	120	235	330


Mid-plane test modules, NBI systems, RF launchers, diagnostics are arranged for ready RH replacement

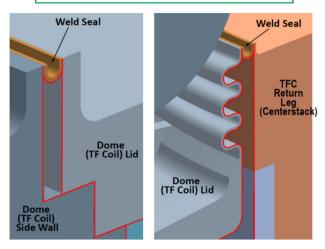
Mid-plane ports

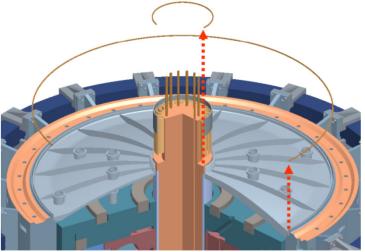
- Minimize interference during remote handling (RH) operation
- Minimize MTTR for test modules
- Allow parallel operation among test modules and with vertical RH
- Allow flexible use & number of mid-plane ports for test blankets, NBI, RF and diagnostics


FNSF internal components assembly/disassembly concept support structure lifetime dose < 0.1 dpa enables staging


Ready replacements, shielded vacuum weld seals and bi-directional sliding joint are proposed to allow RH

To reduce Mean Time to Replace (MTTR) and achieve 10% Duty Cycle


Mid-Plane Test Module Access



Bi-Directional Sliding Joint

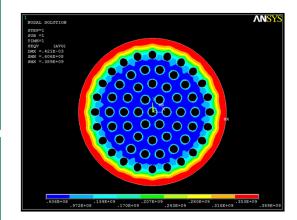
Top TF Conductor Lid

Structural analysis of optimally designed center-post (Arnie Lumsdaine, 28-3P-19)

Objective: minimize peak Von Mises stress by varying radius and positions of cooling channels

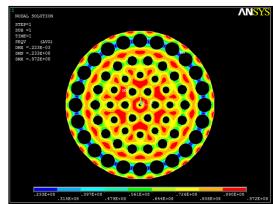
Assumptions:

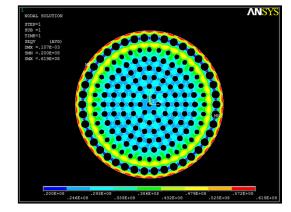
- Nuclear and Joule heating
- Constant water flow
- Constant Copper thermal & electrical conductivities
- ≥5 mm between channels and to surface


Optimization approaches:

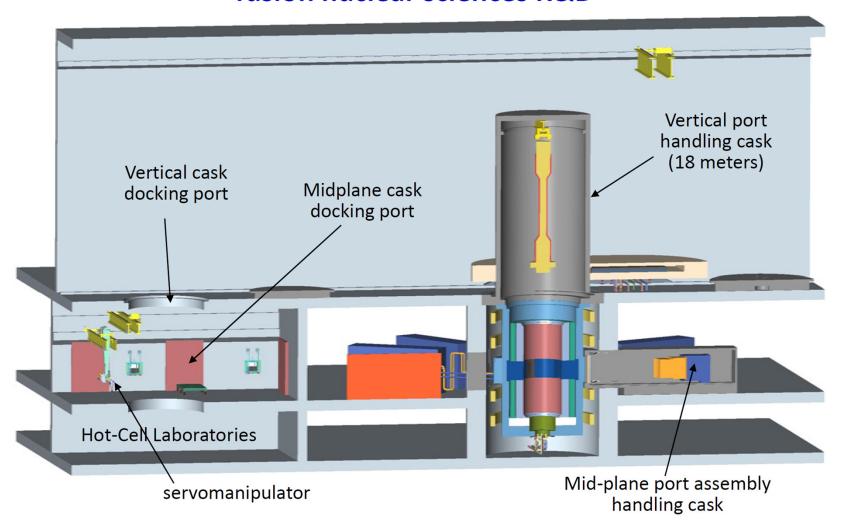
- · Sequential quadratic
- · Particle swarm
- Broyden, Fletcher, Goldfarb, Shanno algarithm
- VisualDOC linked to ANSYS

Better with 8 roles of channels: For $W_L = 2MW/m^2$


- Peak stress reduced to 1/3 to ~100 MPa
- Peak ∆ temp reduced to 60C

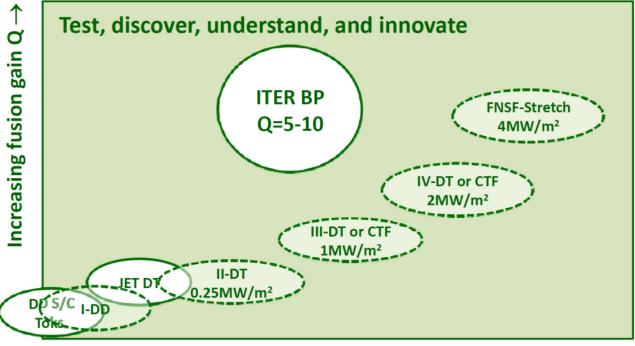

Initial

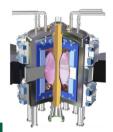
STEP=1 SID =1 SI

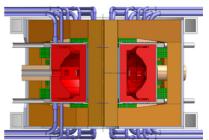

Optimized

Extensive remote handling systems, including hot-cell laboratories, will be required

Remote handling equipment for hot cell laboratories to enable fusion nuclear sciences R&D


To manage the risks, requisite R&D can be defined addressing the FNSF features (STs & Tokamaks)


- Solenoid-free plasma start up, using ECW/EBW, Helicity Injection (STs).
- Hot-Ion H-Mode operational scenarios with strong tokamak database (STs & Tokamaks).
- SOL-Divertor with improved configurations to limit heat fluxes ≤10 MW/m², and control fuel and impurities (extended divertor MAST-U).
- Continuous, disruption-minimized, non-inductive plasma operation in regimes removed from stability boundaries (STs & Tokamaks).
- Continuous PI NBI (JET-like?) & 60 GHz gyrotrons (Tsukuba?)
- Single-turn TF coil center post engineering and fabrication (industry).
- Remote handling (RH) systems and modular internal components, to minimize MTTR to achieve a duty factor of 10% (nuclear R&D facilities).
- RH-enabled maintenance and research hot-cells (nuclear R&D facilities).
- Low dissipation, low voltage, high current, dc power supply with stiff control of current (HTSC based generators?).
- Nuclear grade R&D users' facility infrastructure (national labs).


Accompanying FNS R&D Program to develop, design, instrument, and operate all internal components & options, in concert with FNSF.

FNSF with accompanying R&D aim to carry out cost & time effective fusion nuclear science R&D for DEMO, in progressive stages

discover, understand, and innovate

Increasing fusion neutron flux \rightarrow