# Expectations for Steady-State MFE

M.C. Zarnstorff Princeton Plasma Physics Laboratory

Fusion Power Associates Meeting 15 December2011





MCZ 111215 1

# **Outline**

To have a timely impact, pathway to fusion energy needs to

- build upon our substantial knowledge base
- address outstanding Issues and Risks,
- Plasma Issues for steady-state DEMOs
- Steady-state tokamaks
- Steady-state stellarators
- Summary

Lots of Challenges for a Fusion Energy System

ReNeW, FESAC studies:

- Steady-state, high-performance, robust plasma confinement
- Divertor exhaust loads, PFCs
  Materials & technology in a nuclear environment
  Current drive
- ITER issues continue: ELMs & Disruptions
  - Worse in DEMO: more energy, higher forces
  - PFC armor must be much thinner to achieve TBR > 1

Disruptions and ELMs must be reliably eliminated

# Substantial advances in Steady-State Tokamak Regimes

- Lots of significant work by AUG, DIII-D, JET, JT-60U in part to prepare for ITER
- 100% Non-inductive plasmas achieved in all three strategies
  ~ stationary for at least ~3 relaxation times for the current profile
- DIIID : extensive shape optimization. DN,  $\kappa$ ~1.9,  $\delta$ ~0.6,  $\zeta$ ~ -0.25
- JT-60U : extended to almost 30 sec.
- DIII-D, JT-60U, NSTX : above the no-wall limit

Will use G =  $\beta_N$  H /  $q_{95}^2$  as a dimensionless metric for nT $\tau \sim Q$ using either H<sub>89</sub> =  $\tau_E$  / ITER-89P or H<sub>98</sub> =  $\tau_E$  / ITER-98(y,2)

(see Sipps 2005, Luce 2005, Luce 2011 for summaries) MCZ 111215 4

### Steady-state tokamak: how much bootstrap?



- Need to maintain current / q-profile without inductive current
- Highest Q with maximum selfgenerated bootstrap current
- Large bootstrap current makes hollow profile, changes transport and plasma stability.

Three Advanced Tokamak strategies: ~zero core shear weak reversed shear strong reversed shear

# Similar Landscape on All Experiments



- JT-60U Hybrid sustained for 16  $\tau_{\rm R}$
- All three regimes sustained to ~ 3  $\tau_R$  or longer, stationary.
- Bootstrap current fractions differ systematically

Hybrid  $f_{boot} < 0.5$ ; Weak reversal  $f_{boot} \sim 0.6$ ; Strong rev.  $f_{boot} > 0.7$ 

## Limiting process similar on All Experiments

- High bootstrap, strong reversed shear:  $\beta_N$  limited by strong ITBs produces extremely fast disruptions, often without precursors
- Weak reversed shear is a strategy to avoid ITBs limited by when they occur
- Hybrid and Weak shear reversal limited by external kinks / Wall modes
  & tearing modes

# Reactor Designs are Not Consistent with Sustained AT Characteristics

|                        | Hybrid | Weak<br>Rever | Strong<br>Rever | Slim CS          | CREST       | EU AB | EU C | Aries-<br>AT |
|------------------------|--------|---------------|-----------------|------------------|-------------|-------|------|--------------|
|                        | DIII-D | DIII-D        | JT-60<br>U      |                  | Weak<br>rev |       |      | Weak<br>rev  |
| q <sub>95</sub>        | 3.3    | 6.3           | 8.3             | 5.4              | 4.3         | 3.0   | 4.3  | 3.2          |
| H <sub>98</sub>        | 1.5    | 1.5           | 1.8             | 1.3              | 1.3         | 1.2   | 1.3  | 1.7          |
| β <sub>N</sub>         | 2.8    | 3.7           | 1.7             | <mark>4.3</mark> | 5.5         | 3.5   | 4    | 5.4          |
| G <sub>98</sub>        | 0.38   | 0.14          | 0.044           | 0.19             | 0.39        | 0.47  | 0.28 | 0.90         |
| f <sub>bootstrap</sub> | ~0.4   | 0.65          | 0.75            | 0.77             | 0.83        | 0.45  | 0.63 | 0.91         |
| n / n <sub>GW</sub>    | 0.4    | 0.5           |                 | 0.98             | 1.3         | 1.2   | 1.5  | 0.9          |

• Need to iterate designs using more realistic parameters

# **H&CD efficiency for DEMO:**

assumptions vs reality (IV)

DEMO assumptions:

 $\eta_{WP} \cdot \gamma_{CD} = 0.24 - 0.27$ 

Negative NBI
 ECCD

 $η_{WP} ~ γ_{CD} ~ 0.12 - 0.14$  $η_{WP} ~ γ_{CD} ~ 0.08$ 

ICRF η<sub>WP</sub>• γ<sub>CD</sub> ~ [0.18 – 0.24] • f<sub>coupled</sub> (where f<sub>coupled</sub> = fraction of generator power coupled at edge of plasma ~ 0.4 max H-mode – note no experiment has ever coupled >12MW ICRF power into an H-mode) ~0.07 – 0.095 for H-mode

- With these levels the installed CD powers on PPCS power plants go up considerably



#### Duration limited by CD-efficiency & Beta ITER-like case with R<sub>0</sub>=7.5 m



H. Zohm



Acceptable  $f_{rec} < 0.4$  and significant  $P_{el,net}$  can be fulfilled relatively easily (e.g with  $f_{CD}$ =0.1 and  $\beta_N$ =3,  $P_{el,net}$ =350 MW), but pulse length is nowhere near the target!

Even  $P_{fus}$ =3 GW ( $\beta_N$ =4.2,  $f_{CD}$ =0.2,  $f_{rec}$ =0.33) only gives  $\tau_{pulse} \approx$  3 hrs

# Stellarators: High-β Steady State, without Disruptions

- Equilibrium maintained by coils, from 3d shaping
- $\beta$  =5.4% (LHD) and  $\beta$ =3.4% (W 7-AS) without <u>any</u> disruptions.
- Soft limit is observed, due to saturation in confinement



• Density limit >> Greenwald-equivalent, without disruptions

What sets  $\beta$ -limit? May be due to onset of stochastic B field. Can be improved by design (W7-X, NCSX).

# Low Ripple Gives Good Confinement



- Experimental confinement time shows dependence on ripple magnitude. Analysis: Anomalous transport in addition to 3D-neoclassical.
- Confinement magnitude similar to tokamak ELMy H-mode
- H(ISS04) up to 1.5 obtained at low ripple
- H(ISS04) = 1.1 adequate for reactor, simultaneous with high beta.

MCZ 111215 12

# W 7-X Optimized for High-β, Quasi-Isodynamic

R/(a)=11, R=5.4 m
 Superconducting coils

Operation starting in 2014 / 2015

• Quasi-isodynamic: neoclassical transport minimized by minimizing drift-orbit widths.



- MHD Stable for  $\beta = 5\%$
- Designed for good flux surfaces to  $\beta$ ~5%. Shaping optimized to minimize Shafranov-shift and bootstrap current.

# 3D Tokamak Shaping Gives Stellarator Stability with Tokamak-like Confinement

- NCSX: 3 periods, R/(a)=4.4, ( $\kappa$ )~1.8 , ( $\delta$ )~1
- Quasi-axisymmetric: tokamak with 3D shaping ripple-induced thermal transport insignificant. Build on ITER results.
- Passively MHD stable at  $\beta$ =4.1% to kink, ballooning, vertical, Mercier, NTM Stable for at least  $\beta$  > 6.5% by adjusting coil currents
- Designed to keep ~perfect flux surfaces to  $\beta$ =4.1% 2-fluid calculations indicate it may continue to  $\beta$  > 7%
- Passive disruption stability: equilibrium maintained even with total loss of  $\beta$  or bootstrap current

Need experiment to validate modeling predictions for 3D shaping



G.-Y. Fu L.P. Ku H. Neilson A. Reiman M. Zarnstorff

# **Issues for Stellarators**

Sustained high-beta, robust confinement already achieved.

US Assessment (ReNeW & FESAC):

- 1. Simplify coil designs *(US design studies)* Simplify maintenance strategies for blanket
- 2. Demonstrate integrated high performance: high- $\beta$ , low collisionality (*W7X*)
- 3. Confinement predictability (LHD, W7X)
- 4. Effective 3D divertor design (LHD, W7X)

# Summary

- Substantial advances in last 10 yrs. in understanding steadystate tokamaks and stellarators.
- AT experiments have achieved 100% non-inductive sustainment in three q-profiles, with varying amounts of bootstrap current.
   Very similar characteristics across all experiments.
- AT steady-state performance levels and CD efficiencies are lower than assumed in reactor designs. Disruptions are challenging at high bootstrap fraction.
- Reactor design groups should assess realistic performance, combined with realistic current drive efficiencies.

# Summary (2)

- Steady-state, high-beta plasmas already demonstrated using 3D shaping. No CD needed: minimizes recirculating power required.
- Robust confinement: no disruptions, can avoid edge instabilities (ELMs)
- Simplify & reduce auxiliary technology needs
  - Don't require steady-state neutral beams and RFlaunchers in burning environment
  - Minimize need for diagnostics & feedback in nuclear env.
- Need to simplify coil engineering, maintainability.
- Need to demonstrate integrated performance, incl. divertor. How to best build on ITER?