

Design Integration Approach: ITER and DEMO differences					
EU-DEMO the nearest-term reactor to demonstrate production of electricity with a closed fuel cycle.					
	ITER	DEMO			
Overall Mission	Experimental device	Approaching a commercial plant			
Fusion Power	500MW	~ 2000MW (500 MWe)			
Major Radius	6.2m	~ 9m			
Pulse Length	6 minutes	~ > 2 hrs			
Availability	Exp. campaigns - maintenance and upgrades	Maximize electricity generation			
Complexity	Large number of sensors. 6 Test blanket modules, range of concepts Multiple H&CD systems.	Minimised set of sensors Single blanket concept Minimised H&CD mix			
Heat Transfer	Cooling system optimized for min. stresses and sized for modest heat rejection.	Cooling system designed for electricity generation (e.g. much higher temp.)			
Tritium	No Tritium breeding requirement.	T breeding needed for self-sufficiency.			
Materials	Conventional 316 stainless steel structure. PFC: Be wall / W divertor	Novel low activation materials as structure. PFC: full W			
Neutrons	n-fluence: ~3 dpa in Steel	n-fluence: ~20 dpa FW steel (1 st blank)			
[G. Federici and PPPT team] Xavier Litaudon Fusion Power Associates, 36 th meeting Washington 16-17 Dec. 2015 Page 38					

Preliminary DEMO Design Choices							
under Evaluation	Radial build		Radial build				
 2000MW_{th}, 500 MW_e, > 2 hrs 	DEMO1		DEMO2				
Single null water cooled divertor	10-11	_ 10 -		-			
		5-[
• Full W PFC		3		3			
Low Temperture Super-Conducting	E 0- 0H +	_ E 0-0	4 (+)	-			
magnets Nb ₃ Sn		4		1			
• B conductor ~12 T (depends on A)							
	-10 - 2		Z	-			
EUROFER as blanket structure		-15					
Vacuum Vessel made of AISI 316	-15 - 10 - 15 - 10 - 15 - 20 R/m R/m						
Blanket vertical RH / divertor cassettes		ITER	DEMO1	DEMO2			
a starter blanket: 20 des (200 serves Us):			(2015) A=3.1	(2015) A=2.6			
• <u>starter blanket:</u> 20 dpa (200 appm He);	R / a (m)	62/20	91/29	75/29			
z blanket 50 upa,	κ /δ	17/033	16/033	18/033			
 divertor: 5 dpa (Cu) 	Λ_{95} / O_{95}	692 / 921	1428 / 2502	1252 / 2217			
Open Choices:		10/20	1428 / 2502	12/28			
Operating scenario	$\frac{11}{P_N} \frac{1}{\sqrt{2}}$	1.0 / 2.0	1.0 / 2.0	1.2 / 5.0			
Breeding blanket design concept selection	$P_{sep}(IVIVV)$	104 500 / 0	2027 / 500	2255 / 052			
Primary Blanket Coolant/ BoP	$P_{F}(VVV) / P_{NET}(VVV)$	15 / 0 24	2037 / 500	3235 / 953			
Protection strategy first wall (e.g., limiters)	Ip (IVIA) / Tbs	15/0.24	20 / 0.35	22 / 0.61			
Advanced divertor configurations	$\frac{Bat R_0(1)}{2}$	5.3	5.7	5.6			
Number of coils	B _{max/conductor} (1)	11.8	12.3	15.b			

Key DEMO design and integration challenges

Physics & engineering studies with strong implications on parameter selection and architectural layout :

- Impact of Aspect Ratio
- Sensitivity to plasma physics uncertainties: operating scenarios, radiative regime with no or small ELMS
- Tritium Breeding Ratio sensitivity
- Divertor Optimisation
 - optimization of conventional ITER-like Single null divertor (strike point sweeping parametric scan, lower X-point height, larger flux expansion)
 - Exploration advanced divertor including double null Configuration
- magnetic field ripple effects

- trade-off between Remote Handling access, coil size, NBI access.

 Dwell time and trade-off on Central Solenoid, Balance of Plant...

[G. Federici and PPPT team] Xavier Litaudon | Fusion Power Associates, 36th meeting | Washington | 16-17 Dec. 2015 | Page 40

Conclusion: EUROfusion programme is in full swing

ITER Physics Programme:

- Programmatic approach in a step-ladder vision for ITER
 - 2015-2016 simultaneous operation of JET, AUG, TCV, W7-X, WEST and linear PFC
- Integration of knowledge through theory and modelling for JT-60SA, ITER and DEMO
- Preparation for JET D-T operation with ITER-like wall
- Internationalization of JET to prepare ITER Q_{DT}=10 operation
- Prepare EU to JT-60SA operation

Power Plant Physics & Technology Programme

- INTEGRATED Systems Engineering Approach in the pre-conceptual Design
- Integration of Physics, Engineering and Materials science
 Xavier Litaudon | Fusion Power Associates, 36th meeting | Washington | 16-17 Dec. 2015 | Page 45