

Progress at Tri Alpha Energy

Michl Binderbauer Tri Alpha Energy

Fusion Power Associates 36th Annual Meeting – Washington, DC December 16-17, 2015

Dedicated to ...

Norman Rostoker (1925-2014) Mentor, Friend, Scientific Genius, Visionary

Introduction

- Concept and Goals
- C-2/C-2U a foundational physics testbed
 - Overview
 - Equilibrium profiles and fast particle effects
 - Stability
 - Confinement
 - Sustainment
- Summary of critical accomplishments

FRCs and Tri Alpha Energy's (TAE) Concept Advanced beam driven FRCs

- High plasma β~1
 - compact and high power density
 - aneutronic fuel capability
 - indigenous kinetic particles

Tangential beam injection

- large orbit ion population
- increased stability and transport
- Simple geometry
 - only diamagnetic currents
 - easier design & maintenance
- Linear unrestricted divertor
 - facilitates impurity, ash and power removal

TAE's Present Goals Focus of efforts to now

- Test for failure early and at reduced cost while reducing most critical risks
- Establish beam driven high-β, large orbit FRC physics test bed to
 - provide fast learning cycles and large experimental dataset (~50,000 shots)
 - demonstrate sustainment via neutral beam injection (NBI) for >5 ms (longer than critical timescales) with high repeatability
 - study tangential NBI and fast particle effects on stability and transport
 - measure scaling and study fluctuations and transport

Provide opportunity to

- tightly integrate theory/modeling with experimentation
- develop engineering knowhow and integration

Invite collaboration to accelerate progress

Budker Institute, PPPL, UCI, UCLA, LLNL, Univ. of Pisa, Univ. of Wisconsin, Nihon Univ., Univ. of Washington, Industrial partners

Introduction

Concept and Goals

C-2/C-2U – a foundational physics testbed

- Overview
- Equilibrium profiles and fast particle effects
- Stability
- Confinement
- Sustainment
- Summary of critical accomplishments

Key Approaches to C-2/C-2U Synergetic effects – High Performance FRC (HPF)

C-2U Research Facility (4th Generation Device)

To study sustainment of advanced beam-driven FRC's

C-2U Neutral Beam System

Performance Markers and Design Philosophy

Parameter	Value
Beam energy	15 keV
Total power in neutrals	10+ MW
# of injectors	6
Pulse duration	8 ms flat top
Beam radial e-fold. size	< 10 cm
Beam divergence	< 28 mrad
lon current per source	145 A

Centered, angled and tangential neutral beam injection (NBI)

- Beams aimed at mid-plane to reduce plasma shape impact
- Simulations suggest optimized injection angle in range of 15°-25°
- Injection in ion-diamagnet direction to drive current

High current at low beam energy

- Reduces peripheral fast ion losses
- Increases core heating
- Rapidly establishes dominant fast ion pressure

C-2U Diagnostics Well diagnosed experiment

60+ diagnostics w/ over 1000 channels acquired on every shot (1+ GB/shot)

Introduction

Concept and Goals

C-2/C-2U – a foundational physics testbed

- Overview
- Equilibrium profiles and fast particle effects
- Stability
- Confinement
- Sustainment
- Summary of critical accomplishments

C-2U Equilibrium Profiles Signatures of advanced beam-driven FRC state

- "Double-humped" electron density and temperature profiles, indicative of substantial fast ion pressure
- Hollow center and steep separatrix gradients consistent with past FRC data and numerical simulations

C-2U Experimental Findings Signatures of beam-driven advanced FRC state

Dominant fast ion pressure term

- total pressure is maintained
- ultimately ~ 60% of thermal pressure replaced by fast particle pressure

C-2/C-2U Fast Particle Effects

Improvements coupled to NBI

Positive impact on lifetime, confinement and stability

C-2U Separatrix Length

Fast ions largely determine axial dimension

- Plasma length contracts to fast particle footprint
 - axial dimension of separatrix maintained post transient contraction

Introduction

Concept and Goals

C-2/C-2U – a foundational physics testbed

- Overview
- Equilibrium profiles and fast particle effects
- Stability
- Confinement
- Sustainment
- Summary of critical accomplishments

C-2/C-2U Stability n=2 mode suppression via egde biasing

- Biasing field lines in scrape off layer (SOL) can counteract spin-up and suppress n=2 growth
- Without biasing, diamagnetic and E×B term are additive – plasma spins up
- With proper biasing changes E×B term plasma spins down via shear
- n=2 rotation control without impact on fast particle confinement

C-2/C-2U Stability Wobble suppression via line-tying

- Mode driven by plasma rotation or end mirror effects
- Line-tying between plasma and conducting end surface (i.e. gun electrode) can stabilize wobble
- Line-tying limited by sheath resistance
- Stability requires sufficiently high (~10¹² cm⁻³) gun plasma density (low sheath resistance)
- Active plasma guns and up to 1 kV biasing of central field lines reduces wobble to negligible levels

Introduction

Concept and Goals

C-2/C-2U – a foundational physics testbed

- Overview
- Equilibrium profiles and fast particle effects
- Stability
- Confinement
- Sustainment
- Summary of critical accomplishments

C-2/C-2U HPF Regime Density Fluctuations Quiescent core, turbulence located outside

- Absolute fluctuation levels peak just outbound of separatrix
- Relative fluctuation amplitude increases with radius outside the separatrix
- HPF plasmas have very low fluctuation levels in the FRC core

TRI ALPHA

C-2U Fluctuation Suppression in HPF regime Substantial localized shear near separatrix

Confinement Scaling

Dramatic improvement in current regime

- Strong positive correlation between T_e and τ_{Ee}
- Good fit: $au_{Ee} \propto T_e^{1.6}$

Confinement dramatically better than conventional FRC scaling prediction

~10× improved particle confinement

SOL-Core Confinement Coupling Edge knobs effect overall confinement

- FRC transport is determined by sequential but coupled effects between core and scrape-off layer
- High formation and mirror plug fields improve SOL and core confinement
- HPF14 demonstrates clear coupling between SOL and FRC core

SOL-Core Confinement Coupling Edge knobs effect overall confinement (cont.)

- Improving open-field-line plasmas key for better core confinement
- 20-30% higher core T_e with flaring divertor magnetic field

Introduction

Concept and Goals

C-2/C-2U – a foundational physics testbed

- Overview
- Equilibrium profiles and fast particle effects
- Stability
- Confinement
- Sustainment
- Summary of critical accomplishments

C-2U Sustainment Experiments

Correlation between beam drive and plasma characteristics

- pulse length limited by hardware and stored supply energy (biasing, beams)
- flux maintained (up to 5-5.5 ms) showcases ability to drive current by beams
- electron and ion temperatures maintained (T_e ~120 eV, T_i ~500 eV)
- no active feedback to control anything very robust physics

TRI ALPHA ENERGY

THE POWER OF INGENUITY

26

Introduction

Concept and Goals

C-2/C-2U – a foundational physics testbed

- Overview
- Equilibrium profiles and fast particle effects
- Stability
- Confinement
- Sustainment

Next Steps and Summary

C-2W Next device at 10× stored energy

Summary

Essential accomplishments

- Successfully operated and studied advanced beam driven FRCs
 - dynamic formation and fast ion pressure dominated equilibria
 - achieved engineering integration of major system components
- High Performance FRC regime demonstrated
 - edge biasing, neutral beams and gettering (low Z_{eff}~1.28 in core) produce HPF regime with excellent shot-to-shot reproducibility
 - improved FRC stability and confinement
 - record FRC lifetimes (> 11 ms), limited only by transport
 - beneficial emerging confinement scaling and coupled core-SOL transport
- Advanced beam driven FRC sustainment breakthrough
 - current drive and plasma sustainment in excess of characteristic system and plasma time scales, correlated w/ NB pulse – 5+ ms
 - Performance limited by hardware and stored energy constraints
- Compelling foundation for success with C-2W