Gyrokinetic Studies of Turbulence Spreading

T.S. Hahm, Z. Lin,^{*a*} P.H. Diamond,^{*b*} G. Rewoldt, W.X. Wang, S. Ethier, O. Gurcan,^{*b*} W. Lee, and W.M. Tang

Princeton University, Plasma Physics Laboratory, USA

^aUniv. of California, Irvine, USA ^bUniv. of California, San Diego, USA

Nov. 3, 2004, Vilamoura, Portugal

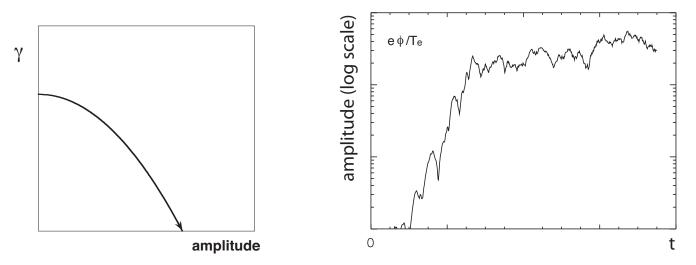
Outline and Conclusions

- Turbulence spreading into linearly stable zone is studied using global gyrokinetic particle simulations and theory.
- Motivation from experiments to study spreading of Edge Turbulence into Core.
- Results
 - Fluctuation amplitude in the linearly stable zone can be significant due to turbulence spreading.
 - Sometimes Spreading of Edge Turbulence into Core can exceed local turbulence in connection region.
 - It is likely to affect "the edge boundary conditions" used in core modeling, and predictions of pedestal extent.

Determination of Fluctuation Amplitude

$$\gamma = \gamma_{lin} - k_{\perp}^2 D_{turb} \to 0$$

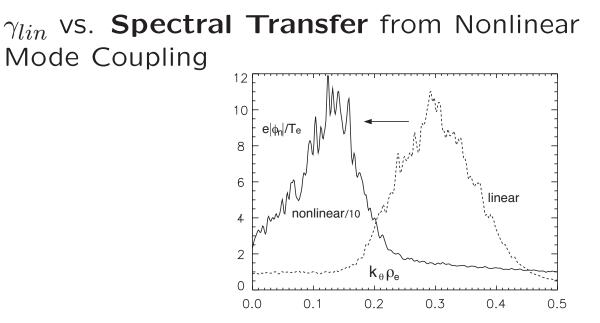
 Nonlinear coupling induced dissipation leads to saturation (B. Kadomtsev '65)



- $\bullet\,$ ''Local Balance in Space'' for a mode k
- "Conceptual Foundation of Most Transport Models"
- Missing:
 - Meso-scale Phenomena: Barrier Dynamics, Avalanches,...
 - Anomalous transport in the region $\gamma_{lin} < 0$
 - Turbulence Spreading into Less Unstable Zone

Excitation of Linearly Damped Modes

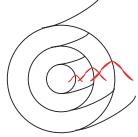
• Nonlinear Saturation from Balance between:



- → Non-zero Amplitude for Linearly Damped Modes
 Sagdeev and Galeev, Nonlinear Plasma Theory (1969)
 Gang-Diamond-Rosenbluth, Phys. Fluids B 3, 68 (1991)
 Hahm-Tang, Phys. Fluids B 3, 989 (1991)
 Horton, Rev. Mod. Phys. (2000) for more references
- \Rightarrow Lin *et al.*, IAEA/TH/8-4 (2004), this Friday

Nonlinear Coupling Leads To Radial Diffusion

- Nonlinear interactions of modes must spread fluctuation energy in radius due to:
 - i) $ik_x \rightarrow \frac{\partial}{\partial x}$
 - ii) poloidal harmonics at q(r) = m/n
 - iii) with different radial extents



iv) Numerical Studies with both Linear Toroidal Coupling and Nonlinear Coupling

[Garbet-Laurent-Samain-Chinardet, NF 1994]

• $\mathbf{E} \times \mathbf{B}$ nonlinearity \rightarrow "local turbulent damping" and "radial diffusion":

$$(\mathbf{k} \times \mathbf{k}' \cdot \mathbf{b})^2 R_{k,k'} I_k I_{k'} \rightarrow -\frac{\partial}{\partial x} D_r(I) \frac{\partial}{\partial x} I + k_{\theta}^2 D_{\theta}(I) I.$$

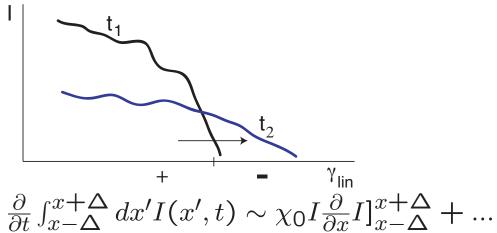
[eg., Kim-Diamond-Malkov-Hahm et al., NF 2003]

Simple Model of Turbulence Spreading

[Hahm, Diamond, Lin, Itoh, Itoh, PPCF 46, A323 '04]

$$\frac{\partial}{\partial t}I = \gamma(x)I - \alpha I^2 + \chi_0 \frac{\partial}{\partial x} (I \frac{\partial}{\partial x} I)$$

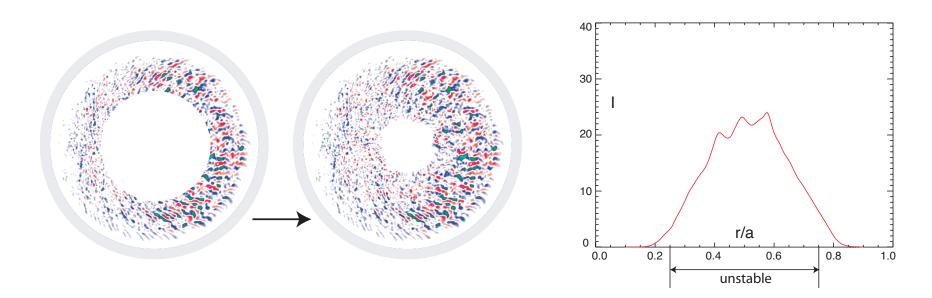
- $\gamma(x)$ is "local" growth rate, α : a local nonlinear coupling
- $\chi_0 I = \chi_i$ is a turbulent diffusivity
- I: turbulence intensity, Σ_k Modes $\sim \Sigma$ Eddys



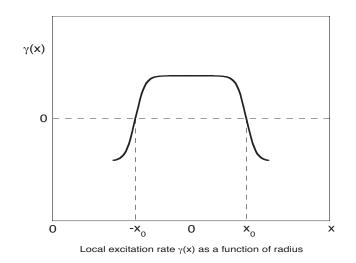


• **Profile of Fluctuation Intensity** crucial to its Spatio-temporal Evolution

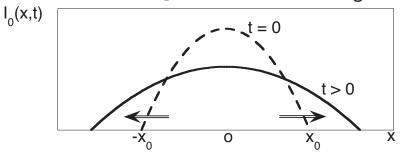
Turbulence Spreading after Local Saturation



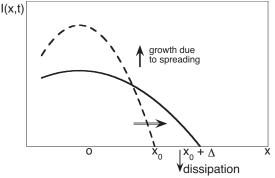
From Gyrokinetic (GTC) simulations, turbulence spreads radially ($\sim 25\rho_i$) into the linearly stable zone, causing deviation from GyroBohm scaling. [Lin *et al.*, Phys. Rev. Lett. (2002)]



• The **nonlinear** diffusion, in the absence of dissipation, will make the front propagate beyond x_0 indefinitely.

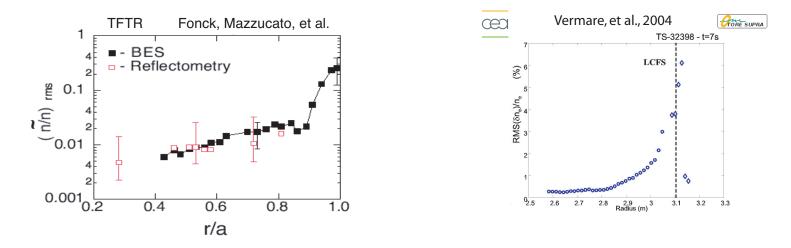


Front propagation stops when radial flux due to propagation is balanced by dissipation: $T_{prop} \simeq \Delta/U_x \iff T_{damp} \sim (|\gamma'|\Delta)^{-1}$



 $\Delta^2 \simeq \frac{12\chi_0 I_0}{|\gamma'|x_0}$, using the values from simulation $\rightarrow \Delta \simeq 18\rho_i$ From GK simulation for a profile considered: $\Delta \simeq 25\rho_i$

Connection Region between Edge and Core



- Profile of Turbulence Intensity crucial in turbulence spreading: $\Gamma_I = -\chi(I) \frac{\partial}{\partial x} I$
- Core confinement improvement after L-H transition: JET, ASDEX, DIII-D, C-mod,...
- Connection Region:

Local Turbulence + Incoming Edge Turbulence

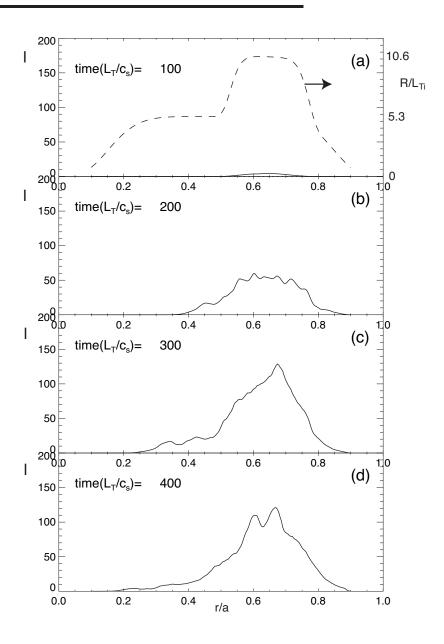
Turbulence Spreading from Edge to Stable Core

• Nonlinear GTC Simulations of Ion Temperature Gradient Turbulence: $\frac{R}{L_T} = 5.3$ at core (within Dimits shift regime)

 $\frac{R}{L_T}$ = 10.6 at edge:

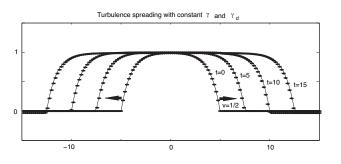
- Initial Growth at Edge

 → Penetration into stable Core
 (Lin-Hahm-Diamond,
 PRL '02, PPCF, PoP '04)
- Saturation Level at Core: $\frac{e\delta\phi}{T_e} \sim 3.6 \frac{\rho_i}{a}$ $\rightarrow \nabla \cdot \Gamma_{I} >> \gamma_{local} I$



Spreading in Unstable Zone

[Gurcan, Diamond, Hahm, and Lin, Submitted to Phys. Plasmas '04]



 $\frac{\partial}{\partial t}I = \gamma(x)I - \alpha I^2 + \chi_0 \frac{\partial}{\partial x}(I\frac{\partial}{\partial x}I)$

- When $\gamma(x)$, α , χ_0 are constant in radius, the Fisher-Kolmogorov equation with nonlinear diffusion exhibits **"propagating front"** solutions.
- The spreading can beat local growth and a solution exhibits ballistic propagation $d(t) = U_x t$ with

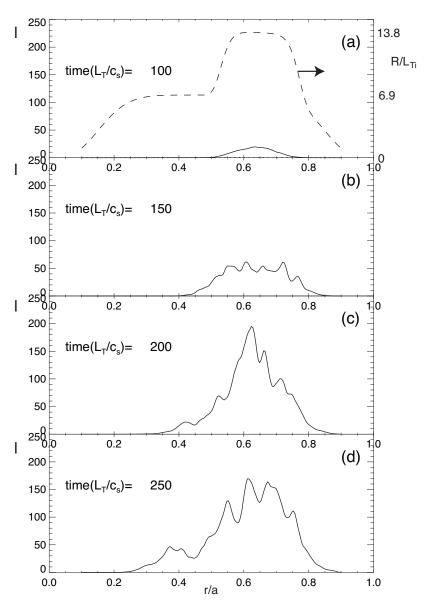
$$U_x = \gamma^{1/2} \times (\frac{\chi_0 I}{2})^{1/2}$$

• $U_x \sim$ geometric mean of "local growth" and "turbulent diffusion", faster than transport time scale.

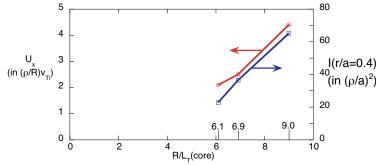
Edge Turbulence Spreading to Unstable Core

- Nonlinear Gyrokinetic **Simulations of Ion Temperature** Gradient Turbulence: $\frac{R}{L_T}$ = 6.9 at core (Cyclone value) $\frac{R}{L_T}$ = 13.8 at edge
- Initial Growth at Edge followed by Ballistic Front Propagation into Core
- Saturation Level at Core $\sim 2 imes$ Core (only) Result

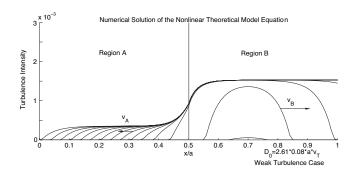
$$\nabla \cdot \Gamma_{\rm I} \sim \gamma_{local} I$$



Front Propagation Speed Increases with R/L_T



- From Simulation, U_x and I increase with $(\frac{R}{L_T})$
- Nonlinear Diffusion Model: $U_x \propto (\gamma I)^{1/2}$ by [Gurcan-Diamond-Hahm-Lin, submitted to PoP '04]

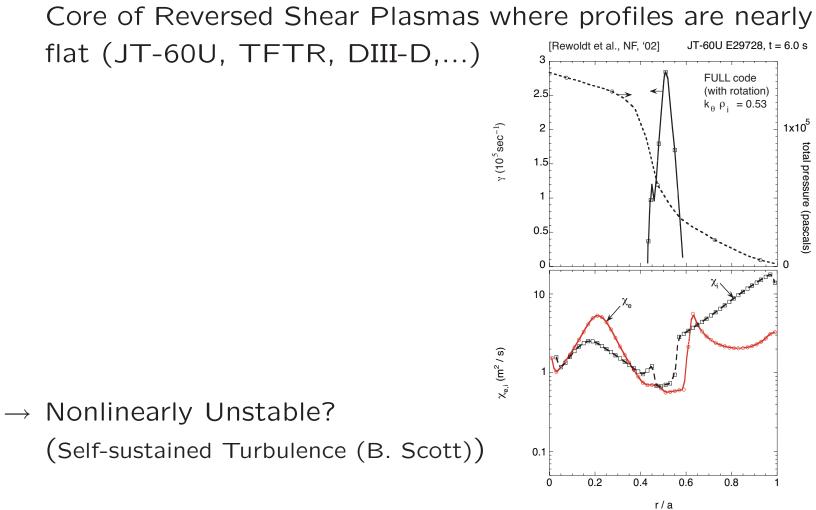


- Toroidal Linear Coupling dominant Regime: $U_x \sim \frac{\rho_i}{R} v_{Ti}$ by [Garbet-Laurent-Samain-Chinardet, NF '94]
- Four Wave Model: Complex Bursty Spreading by [Zonca-White-Chen, PoP '04]

- Turbulence spreading has been widely observed in global gyrokinetic particle simulations: It can be responsible for deviation of transport scaling from GyroBohm.
- Fluctuation Intensity in the linearly stable region can be significant due to turbulence spreading.
- Sometimes **Spreading of Edge Turbulence** into Core can exceed local turbulence in connection region.
- It is likely to affect "the edge boundary conditions" used in core modeling, and predictions of pedestal extent.

Turbulence Spreading has been widely observed

- From Most Global Gyrokinetic/Gyrofluid Simulations:
 - X. Garbet et al., NF '94 (Mode-coupling in Torus)
 - R. Sydora et al., PPCF '96 (Torus with Zonal Flows)
 - Y. Kishimoto et al., PoP '96 (Torus with Zonal Flows)
 - S. Parker et al., PoP '96 (Torus without Zonal Flows)
 - W.W. Lee et al., PoP '97 (Torus without Zonal Flows)
 - Y. Idomura *et al.*, PoP '00 (Sheared Slab with Zonal Flows)
 - Z. Lin et al., PRL '02 (Torus with Zonal Flows)
 - L. Villard et al., IAEA '02 (Cylinder with Zonal Flows)
 - R. Waltz et al., PoP '02 (Torus with Zonal Flows)
 - Y. Kishimoto *et al.*, H-mode '03 (Sheared Slab with ZF)
- Neither Zonal Flows nor Toroidal Coupling necessary for Turbulence Spreading.

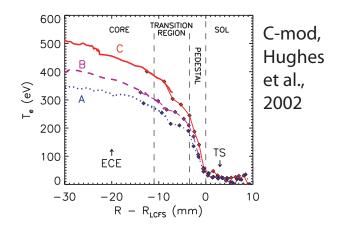


 \rightarrow Spreading from the Linearly Unstable Zone

Distinction between "Core" and "Edge" blurred

- Researchers have frequently divided the tokamak into three zones a central sawtoothing zone, a middle 'confinement zone', and an edge zone...
 Goldston-U.S.A. Kyoto IAEA (1986)
- the edge..., often used as a boundary condition for core transport modeling
 V. Parail, Plasma Phys. Control. Fusion, 44, A63 (2002)

•
$$\frac{\partial}{\partial x}\gamma(x)\sim \frac{\partial^2}{\partial x^2}P$$
: large at the top of pedestal



Long Term Behavior: Sub-Diffusion

- Self-similar Variable: $\ell(t)^2 \sim \chi_0 I^\beta t$
- $I(t)\ell(t) = I(0)\ell(0) \equiv \epsilon$, up to dissipation
- $\ell(t) \sim [\chi_0 \epsilon^\beta t]^{\frac{1}{2+\beta}}$ ~ $t^{1/3}$: Weak Turbulence ~ $t^{2/5}$: Strong Turbulence

- Previous numerical mode coupling study:
 - X. Garbet et al., NF 1994
 - Linear toroidal coupling usually dominates $\sim t^1$:
 - convective
 - Without linear toroidal mode coupling $\sim t^{1/2}$: diffusive

Short Term Behavior: Ballistic Propagation

•
$$x_{front} = (x_0^3 + 6\epsilon \chi_0 t)^{1/3}$$

•
$$U_x = \frac{d}{dt} x_{front}$$

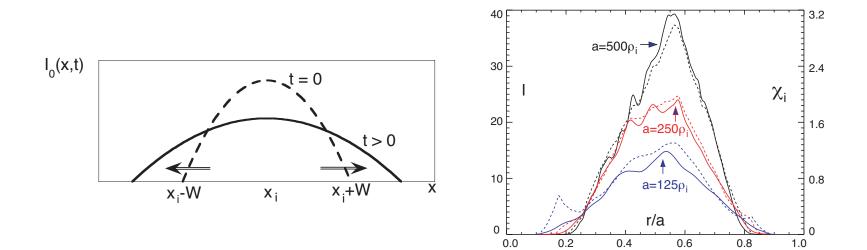
 $\sim 2\epsilon \chi_0 / x_0^2$: for small t (consequence of $\Delta << x_0$)
 $\sim t^{-2/3}$: for large t (sub-diffusion)
Note: $\epsilon \propto I$, turbulence intensity

• Scaling of U_x drastically different from V_{gr} of linear drift (ITG) wave

 \rightarrow contrast our theory from others relying on linear dispersion [eg., Garbet *et al.*, PoP '96; Zonca *et al.*, PoP '04]

Simple theory captures ρ^* dependence of spreading

$$I_0(x,t) = \frac{\epsilon}{(6\epsilon\chi_0 t + W^3)^{1/3}} \left(1 - \frac{(x - x_i)^2}{(6\epsilon\chi_0 t + W^3)^{2/3}} \right)$$
$$\times H\left((6\epsilon\chi_0 t + W^3)^{1/3} - |x - x_i| \right)$$



Spreading of Self-sustained Turbulence

[Itoh, Itoh, Hahm, and Diamond, submitted to J. Phys. Soc. Jpn. '04]

$$\frac{\partial}{\partial t}I = \Gamma_{NL}(I,x)I + \chi_0 \frac{\partial}{\partial x}(I\frac{\partial}{\partial x}I)$$

Model self-sustained sub-critical turbulence [*eg.*, *B. Scott*, *PRL '90*]:

$$\Gamma_{NL}(I,x) > 0$$
 for $I_{crit} < I < \frac{\gamma_0}{\alpha}$,
 $\Gamma_{NL}(I,x) = 0$ for $I < I_{crit}, I > \frac{\gamma_0}{\alpha}$, at $|x| < L$, and

 $\Gamma_{NL}(I,x) < 0$ at |x| > L according to local linear and nonlinear damping

Due to turbulence spreading, there exists a minimum size system (L) that can sustain the self-sustained turbulence