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Significant theoretical and experimental progress
continues to be made at LLE – charting the path
to ignition with direct-drive ICF

I1565

• Ignition target designs are being validated on OMEGA with
scaled implosions of cryogenic D2/DT targets.

• Symmetric direct drive on the National Ignition Facility (NIF)
is predicted to achieve high-gain (~40).

• Direct drive targets are predicted to ignite on the NIF while
it is in x-ray-drive configuration with polar direct drive (PDD).

• Fully integrated fast-ignition (FI) experiments will begin on
OMEGA with the completion of the high energy petawatt
(HEPW) upgrade – OMEGA EP.

Summary

Prospects for thermonuclear ignition with direct
drive on the NIF are extremely promising.



Outline

• Direct-drive inertial confinement fusion (ICF)

• OMEGA

• Symmetric illumination direct-drive ignition designs

• Polar direct drive

• Fast ignition research



Ablation is used to generate the extreme pressures required
to compress a fusion capsule to ignition conditions

S5e

“Hot-spot” ignition requires the core temperature to be at least
10 keV and the core fuel areal density to exceed ~300 mg/cm2.

2. Compression

Imploding
pellet

Expanding
blowoff

1. Irradiation

Laser or
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TC2998w

•  60 beams
•  >30 kJ UV on target
•  1%–2% irradiation nonuniformity
•  Flexible pulse shaping
•  Short shot cycle (1 h)

The OMEGA laser is the most powerful UV
laser for fusion research in the world

Laser bay

Target bay
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OMEGA creates extreme states of matter
with high reproducibility

• Compressed pressures of 5~10 Gbar

• DT neutron yields of 1014

• Peak ion temperatures of ~20 keV

Benchmark direct-
drive implosions

15-atm
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OMEGA cryogenic targets are energy scaled
from the NIF symmetric direct-drive point design

E11251j

Energy ~ radius3;
power ~ radius2;

time ~ radius

Initial cryogenic DT implosions are expected in spring 2005.
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E12130c

Perturbation seeds from four sources early in the implosion
determine the final capsule performance

Early time

Acceleration phaseDeceleration phase

Peak compression

Rayleigh–Taylor growth
and feedthrough

Diagnostics
•  Neutronics
•  Charge particle spectroscopy
•  X-ray spectroscopy

Main laser drive

Rayleigh–Taylor and
Bell–Plesset growth

DT gas

Fusion burn/ ignition

Hot-spot formation

Shell mix

DT ice

Laser imprint  1
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TC5577e

A global nonuniformity budget for the direct-drive point
design can be formed by scaling gain with σ

* P. McKenty et al., Phys. Plasmas 8, 2315 (2001).Multiplier

Applied SSD bandwidth (laser imprint)
(two-color cycle × 1 THz)

On-target power imbalance (× 2% rms)

Inner-surface roughness (× 1-µm rms)

Outer-surface roughness (× 80 nm)

• The NIF gain* and OMEGA yield can be related by

 σ2 = 0.06 σ2
       + σ2
�<10 ��10 ;

σ� = rms amplitudes at the end of the acc. phase.
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TC5950c

Shell stability and compressibility
depend on the adiabat

• Mimimum energy required for ignition:1,2  Emin ~ α1.88 α = P/PFermi

• Rayleigh–Taylor instability growth γ = αRT(kg)1/2 – βRTkVa Va ~ α3/5
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Adiabat shaping is achieved using
a high intensity picket laser pulse.

Laser imprint

1M. Herrmann et al., Phys. Plasmas 8, 2296 (2001).
2R. Betti et al., Phys. Plasmas 9, 2277 (2000).



E12854a

Measured radiographs show significant
imprint reduction with picket pulses

V. N. Goncharov, Phys. Plasmas 10, 1906 (2003).
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Optical-depth modulations are significantly reduced
at shorter wavelengths using a picket pulse
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Adiabat shaping is a very powerful technique
to reduce the growth of hydrodynamic instabilities
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TC6339d

Direct-drive target stability is dramatically
improved when adiabat shaping is applied

The benefit of pickets has been confirmed in NRL
and LLNL simulations.
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I1566

Reduction of the on-target laser irradiation nonuniformity
on OMEGA dramatically improved implosion performance
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Submicron rms ice layers were demonstrated; the smoothest
layers were confined to localized regions of the target

•  24 views every 15° in “x” and “y”
•  0.8 to 1.4 µm over 1/4 of target’s surface
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2-D DRACO demonstrates good agreement in predicting
target performance for shot 35713 (α ~ 4)

TC6465d
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A stability analysis* of the α = 4 design defines the ignition-
scaling performance window for cryogenic implosions

*P. McKenty et al., Phys. Plasma 11, 2790 (2004).

• The NIF gain and OMEGA yield can be related by

σ2 = 0.06σ�<10
2 + σ�≥10

2 ,
where the σ�’s are the rms amplitudes at the end of the acceleration phase*.
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Hydrodynamic simulations are consistent with implosion
data over a wide range of ice roughness and target offset
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Direct drive can achieve ignition while the NIF
is in the x-ray-drive configuration

Standard pointing
with x-ray-drive
configuration Repointing for PDD
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2-D hydrodynamic simulations

• Polar direct drive (PDD) is based on
the optimization of phase-plate design,
beam pointing, and pulse shaping.

Polar Direct Drive
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Ti = 4 keV
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2-D hydrocode simulations track the measured target
nonuniformity for initial PDD experiments on OMEGA

• The NIF PDD configuration with 48 quads has been approximated
by repointing 40 beams for implosions on OMEGA
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A complementary approach to hot-spot ignition, namely
fast ignition is an active area of research at LLE

(a) (b)

Fast Ignition

Fast IgnitorConventional ICF

Fast
injection
of heat

Fast-heated side spot ignites
a high-density fuel ball
ρhot ≈ ρcold (isochoric)

Low-density central spot ignites
a high-density cold shell
ρThot ≈ ρTcold (isobaric)
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Ignition could be acheived at lower drive
energies with fast ignition
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The two viable fast-ignition concepts share fundamental
issues: hot-electron production and transport to the core

E11710e

Hole
boring Ignition

2.6 kJ, 10 psLight pressure
bores hole in

coronal plasma. ~1-MeV electrons
heat DT fuel to
~10 keV, ~300 g/cc.

Channeling concept Cone-focused concept

Au cone

Single ignitor
beam: 2.6 kJ

in 10 ps

e–



OMEGA
Laser Bay

OMEGA
target chamber

OMEGA EP
Laser Bay

Compression
chamber
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Fast ignition with cryogenic fuel will be conducted
on OMEGA with the high energy petawatt OMEGA EP

OMEGA EP

Short-pulse
performance

Short pulse (IR)

IR energy
on-target (kJ)

Intensity (W/cm2)

Short-pulse
beam 1

1 to 100 ps
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Short-pulse
beam 2
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~ 4 × 1018

OMEGA EP
target
chamber

Main
amplifiers

OMEGA EP will be
completed in FY07



Significant theoretical and experimental progress
continues to be made at LLE – charting the path
to ignition with direct-drive ICF

I1565

• Ignition target designs are being validated on OMEGA with
scaled implosions of cryogenic D2/DT targets.

• Symmetric direct drive on the National Ignition Facility (NIF)
is predicted to achieve high-gain (~40).

• Direct drive targets are predicted to ignite on the NIF while
it is in x-ray-drive configuration with polar direct drive (PDD).

• Fully integrated fast-ignition (FI) experiments will begin on
OMEGA with the completion of the high energy petawatt
(HEPW) upgrade – OMEGA EP.

Prospects for thermonuclear ignition with direct
drive on the NIF are extremely promising.

Summary/Conclusions
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Gas-tight fast-ignition targets were developed
for fuel-assembly experiments

• 870-µm OD shell

• 24-µm wall

• ~10 atm D2 or D3He fill

• 35° half-angle gold cone

• Backlighting
– 35 beams, 12 kJ, 1 ns on target
– 15 beams, 6 kJ, 1 ns on backlighter

• Areal-density measurements
– 55 beams, 22 kJ, 1 ns on target

870 µm
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The backlit framing-camera images show the core
assembly and cone reaction in great detail

1.73 ns 1.85 ns 2.04 ns 2.15 ns

2.23 ns 2.54 ns 2.65 ns 2.77 ns

Shot 32381, V backlighter,
D2 fill, yield = 6 × 106,

ρR ~ 60 mg/cm2 (D3He proton dE/dx)

200 µm

Cone

Shell




