

Development, Physics Basis, and Projections of Hybrid Scenario Operation in ITER on DIII-D

by M.R. Wade for the DIII-D Team

M.R. Wade,¹ T.C. Luce,² R.J. Jayakumar,³ P.A. Politzer,² A.W. Hyatt,² J.R. Ferron,² C.M. Greenfield,² E.H. Joffrin,⁴ M. Murakami,¹ C.C. Petty,² R. Prater,² J.C. DeBoo,² J. La Haye,² P. Gohil,² T.L. Rhodes,⁵ and A.C.C. Sips⁶

> ¹Oak Ridge National Laboratory ²General Atomics ³Lawrence Livermore National Laboratory ⁴CEA Cadarache Euratom Association ⁵University of California-Los Angeles ⁶Institut fur Plasmaphysik

Presented at 20th IAEA Fusion Energy Conference Vilamoura, Portugal

November 3, 2004

'HYBRID' REGIME: A NEW STANDARD IN STATIONARY TOKAMAK PERFORMANCE THAT OFFERS ENHANCED RESEARCH OPPORTUNITIES IN ITER

- 'Hybrid' Regime was originally conceived to take advantage of improved performance and current drive capabilities to achieve long-pulse operation in ITER (at Q_{fus} < 10)
- Over the past few years, DIII–D has demonstrated stationary operation with $\beta \ge 80\% \beta^{no-wall}$ and $H_{89} > 2$ over a wide range in q_{95} (2.8 < q_{95} < 5) and density (0.3 < n_{eo}/n_{GW} < 0.75)
- Projections based on this data are uniformly positive and offer a wide range of operating options in ITER
 - $Q_{fus} = \infty (q_{95} = 3)$

-
$$Q_{fus} = 10$$
 for 3900 s (q₉₅ = 4.4)

RECENT EXPERIMENTS HAVE DEMONSTRATED TRULY STATIONARY (> 9 τ_R), HIGH PERFORMANCE OPERATION

NORMALIZED FUSION PERFORMANCE AND DURATION **COMFORTABLY EXCEED THAT OF ITER BASELINE SCENARIO**

PERFORMANCE AT OR ABOVE ITER BASELINE DESIGN HAS BEEN ACHIEVED OVER A WIDE RANGE IN q_{95}

SAN DIEGO

FUSION PERFORMANCE MAXIMIZES AT LOW q95; G \approx G_{ITER} AT q_{95} = 4.5

SAN DIEGO

FUSION PERFORMANCE MAXIMIZES AT LOW q95; G \approx G_{ITER} AT q_{95} = 4.5

NATIONAL FUSION

SAN DIEGO

FACILITY

FUSION PERFORMANCE WEAKLY DEPENDENT ON PLASMA DENSITY

FUSION PERFORMANCE WEAKLY DEPENDENT ON PLASMA DENSITY

SAWTEETH BEHAVIOR DISTINGUISHES HYBRID REGIME FROM CONVENTIONAL REGIME

• With early heating, sawteeth do not appear

SAWTEETH BEHAVIOR DISTINGUISHES HYBRID REGIME FROM CONVENTIONAL REGIME

SAWTEETH BEHAVIOR DISTINGUISHES HYBRID REGIME FROM CONVENTIONAL REGIME

• With early heating, sawteeth do not appear

- Without early heating, m =2, n =1
 NTM triggered by sawteeth at
 20% lower β_N
- At slightly lower β_N, 2/1 mode not destabilized
- After 3/2 mode grows, sawteeth diminish

STUDIES HAVE SHOWN 3/2 NTM AMPLITUDE IS KEY TO AVOIDANCE OF SAWTEETH

263-04/MW/jy

STUDIES HAVE SHOWN 3/2 NTM AMPLITUDE IS KEY TO AVOIDANCE OF SAWTEETH

STUDIES HAVE SHOWN 3/2 NTM AMPLITUDE IS KEY TO AVOIDANCE OF SAWTEETH

263-04/MW/jy

IMPROVED CONFINEMENT IS DUE TO GOOD TRANSPORT ACROSS ENTIRE PROFILE

IMPROVED TRANSPORT APPEARS TO BE DUE TO THE INTERACTION OF SEVERAL EFFECTS

- Improved transport is likely due to a combination of reduced turbulence drive (γ_{max}) associated with T_i/T_e > 1 and a favorable current profile and increased stabilization via ExB shear
- GLF23 indicates sensitivity to ExB shear
 - Is this due to small γ_{max} or large ExB shear?
- Experiments in 2006 should help resolve this issue
 - Balanced NBI
 - Increased electron heating capability

PROJECTIONS TO ITER ARE UNIFORMLY FAVORABLE AND SUGGESTS IGNITION IS POSSIBLE

Projections

		q ₉₅ = 4.5			q ₉₅ = 3.2	
Plasma current		10.3 MA			13.9 MA	
Duration		3900 s			1900 s	
Scaling	H ₈₉	H _{98v2}	H_{DS03}^{*}	H ₈₉	H _{98v2}	H^*_{DS03}
P _{fusion}	440	440	370	780	740	700
Q _{fus}	9.0	8.9	∞	12.9	39	∞

* Petty, Fusion Sci. Tech. <u>43</u> 1 (2003)

Primary difference is $\boldsymbol{\beta}$ scaling:

H₈₉: β-0.5 H_{98y2}: β-0.9 H_{DS03}: β⁰

Projection Methodology:

- Use plasma shape, q95, and $\beta_{\text{N}},$ and \textbf{H}_{XX} from experiment
- 50/50 D-T mix, Z_{eff} prescription from ITER, He ash treated self consistently
- Use DIII–D n_e , T_e profiles, fix $T_e = T_i$
- Choose n/n_{GW} = 0.85; τ_{He}^{*} / τ_{E} = 5; C_{EJIMA} = 0.6

 Stationary, high normalized performance operation has been demonstrated on DIII–D over a wide range in operating space.

```
q<sub>95</sub> = 3.2: G = \beta_N H_{89}/q_{95}^2 > 1.4 \text{ G}_{ITER} for > 9 \tau_R
q<sub>95</sub> = 4.5: G \approx G<sub>ITER</sub> for > 4 \tau_R
```

- Projections are uniformly favorable for ITER and suggest the possibility of very high fusion gain (possibly Q_{fus} = ∞) operation as well as long pulse, Q_{fus} > 5 operation in ITER
- Stability and confinement characteristics are similar to that of the conventional, ELMing H-mode case (ITER physics basis is still valid)
 - Measurements indicate the importance of a small m=3/n=2 NTM in controlling the current profile to prevent or minimize sawteeth, thereby allowing high β , good confinement operation

