

INTEGRATED REAL-TIME CONTROL FOR ADVANCED STEADY STATE SCENARIOS AND APPLICATIONS TO BURNING PLASMAS

D. Moreau

EFDA-JET CSU, Culham Science Centre, Abingdon, OX14 3DB, U. K.

Euratom-CEA Association, CEA-Cadarache, 13108, St Paul lez Durance, France

Acknowledgements :

V. Cordoliani, L. Laborde, D. Mazon, A. Murari, T. Tala, L. Zabeo, M. Ariola, R. Albanese, F. Crisanti, G. De Tommasi, R. Felton, E. Joffrin, X. Litaudon, A. Pironti, F. Sartori, and many other JET-EFDA Contributors

D. Moreau

Actuators and nonlinear couplings in present day experiments

TOKAMAK NONLINEAR TRANSPORT COUPLINGS

Actuators and nonlinear couplings in a bootstrap-dominated steady state burning plasmas

From low- β to bootstrap-dominated burning plasmas

On the way to a bootstrap-dominated burning plasma, the bootstrap current driven by the fusion power acts as the primary circuit of a transformer

This can lead to the formation of a current hole

and requires integrated real-time profile control (magnetic/kinetic)

The interplay between heating and current drive in a plasma dominated by alpha heating + bootstrap current

can lead to uncontrollability : "frozen-in field"

Increase current drive power \Rightarrow Increase heating \Rightarrow Increase fusion rate and alpha heating effect on temperature faster than effect on current \Rightarrow freezing of the current profile

Requires integrated burn (fueling) and profile control (H&CD) (magnetic/kinetic - multiple time scales)

Requires experiments in simulated burning conditions (ICRH) Requires experiments in DT plasmas (fuel/exhaust control)

Simulation of alpha-particle heating and burn control

(Investigation of a thermal instability control in ITER relevant scenario)

q-PROFILE CONTROL ISSUES IN ADVANCED TOKAMAK BURNING PLASMAS

Alpha-power drives large bootstrap current

Excessive bootstrap current induces a current hole

Control with additional H&CD is difficult because of the interplay between heating and current drive

MAY REQUIRE ULTRA-SLOW FUSION POWER RAMP-UP

AND/OR

ACCURATE INTEGRATED CONTROL (MULTIPLE TIME SCALES)

What can an AT plasma controller achieve ?

Many profiles of parameters need to be controlled with a rather limited number of actuators

Least square distributed parameter control (trial basis functions + Galerkin scheme) :

Output profiles :

Setpoint profiles :

$$\boldsymbol{\mathcal{V}}(\mathbf{x},\mathbf{s}) = \sum_{j=1}^{N} \boldsymbol{\mathcal{D}}_{j}(\mathbf{x}) \cdot \mathbf{Q}_{j}(\mathbf{s}) + \text{residual}$$
$$\boldsymbol{\mathcal{V}}_{setpoint}(\mathbf{x}) = \sum_{j=1}^{N} \boldsymbol{\mathcal{D}}_{j}(\mathbf{x}) \cdot \mathbf{Q}_{j,setpoint} + \text{residual}$$

Design a controller to **minimize a least square quadratic form** :

$$\int_{0}^{1} \mu_{1}(x) \left[q(x) - q_{\text{setpoint}}(x) \right]^{2} dx + \int_{0}^{1} \mu_{2}(x) \left[\rho_{T}^{*}(x) - \rho_{T, \text{setpoint}}^{*}(x) \right]^{2} dx$$

D. Moreau et al., Nucl. Fusion 43 (2003) 870

L. Laborde et al., PPCF 47 (2005) 155

Distributed-parameter control of q and ρ_{Te}^*

IEA W60 Burning Plasma Physics and Simulation, Tarragona, July 2005

12

IEA W60 Burning Plasma Physics and Simulation, Tarragona, July 2005

First milestones towards AT scenario control on JET

- 1. 1999-2000 : Conceptual and modelling studies for controlling strongly coupled plasma profiles with a limited number of actuators : Safety factor profile (q) ITB : Dimensionless temperature or pressure gradient (ρ_{Te}^* , ρ_{Ti}^* , ρ_P^*) + density, rotation ...
- 2001-2002 : Control of the current profile : One actuator in the preheat phase : LHCD Three actuators in the performance phase : LHCD, NBI, ICRH
- 3. 2002-2004 : Extreme Shape Controller (XSC)
- 4. 2003-2004 : Simultaneous control of q(r) and $\rho_{Te}^*(r)$ with 3 actuators Modelling with JETTO and first successful experiments in JET
- 2005-20... : Integrate shape, flux and 2-time-scale profile control in high-bootstrap non-inductive plasmas (profile control + XSC2 project). Simulate burning plasma conditions with ICRH + Real DT Experiment

What is needed to prepare ITER AT scenarios on JET

Why AT burning plasma scenarios on JET ?

- ➔ reduce a heavy experimental development of an AT scenario on ITER
- ➔ clarify the "final" choice for the ITER-SS H&CD upgrade (up to 140 MW)
- → investigate the integrated control requirements (profiles, flux, burn, wall ...)

Heating & CD power: P_{tot} ~35-50MW for integrated non-inductive scenario at high β and relevant q_{95} , T_i/T_e , M_{ϕ} , $\rho*$...

- (1) ITER-like ICRH antenna + A2 antennas (14 MW)
- (2) NBI power upgrade (32 MW)
- (3) LHCD launcher(s) for wall + α -heating compatible densities (>6MW PAM)

<u>Fuelling systems</u>: reliable pellet fuelling (Tore Supra ~ 98%) to operate at higher core and edge density, decouple fuelling & heating, ELM mitigation

Ergodic edge: set of external magnetic coils for ELM suppression (DIII-D)

<u>Real-time equilibrium code</u> + proper constraints (EQUINOX-J + RT diagnostics)

X. Litaudon, F. Crisanti and C. Challis, JET TFS2 Leaders

Conclusions

The application of AT scenarios to steady state burning plasmas will require the development of control techniques for **strongly coupled distributed-parameter systems** with a large number of output parameters but a limited number of actuators.

Investigations are in progress at JET to develop such control schemes

- control of the plasma shape (eXtreme Shape Controller)
- of the safety factor profile, including q_{edge} (H&CD)
- of the temperature, density and rotation profiles (H&CD)
- of the primary flux consumption (XSC2 JET project)

ITER perspective ... bootstrap-dominated regime (density/power)
Extend to an ICRH-simulated burn and to a D-T burning plasma
→ Active M€ research needed in parallel with B€ ITER construction