

NSTX Contributions to Burning Plasma Studies

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INFI Johns Hopkins U LANL IINI Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

Martin Peng ORNL, UT-Battelle For the NSTX Team

Workshop (W60) on "Burning Plasma Physics and Simulation"

4-5 July 2005 University Campus Tarragona, Spain

Under the Auspices of The IEA Large Tokamak Implementing Agreement

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvoao U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo **JAERI** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

NSTX Is Contributing Actively to Physics Topics of Interest to Burning Plasmas

- Super-Alfvénic ion driven modes and associated losses
- Co-linearities in confinement scaling
- Active MHD mode control to raise β limit
- 2-D x-ray crystal spectrometer

Low-A Studies of Super-Alfvénic Ion Driven Modes and Associated Losses Are of Interest to ITER

- **ITER Topic**: Prediction of fast particle induced instabilities and associated fast particle losses
- **High priority for 2005-2006**: Understand intermediate-n AEs; losses of fast particles from AEs; and perform theory-data comparisons on damping and stability.
- NSTX operating conditions overlap ITER in normalized fast particle velocity and $\boldsymbol{\beta}$
- New modes by super-Alfvénic ions were discovered and identified—likely important in ITER
- Diagnostics & modeling readied to elucidate modes and transport of super-Alfvénic ions

NSTX Operating Conditions Overlap ITER in Normalized Fast Particle Velocity and β

- NSTX overlaps with ITER in $v_{fast}/v_{Alfven} (\geq 1)$ and $\beta_{fast}/\beta_{tot} (\leq 0.2)$
- Identify and characterize modes unique to super-Alfvénic ions
- Large β_{fast} reveals potential nonlinear physics of waveparticle resonance overlap
- Strong test bed for simulations and validations of fast ion physics models by going beyond ITER parameters
- Caution: ρ_{fast}^* different from ITER

New Modes by Super-Alfvénic Ions Were Discovered and Identified – Likely Important in ITER

ITER-Relevant Modes

- Multiple TAEs with resonant overlap / chirping
- Super-Alfvénic driven:
 - CAEs (nonlinear heating of thermal ions?)
 - GAEs
 - Hole-Clump
- **Fisch** (α -channeling)
- Gorelenkov (ITER beam and α profile relaxations)

Diagnostics & Modeling Are Readied to Elucidate *AE Modes and Transport of Super-Alfvénic Ions

Measurements

- Fast particle loss

- Fast Lost Ion Probe
- Scanning FLIP
- Neutral Particle Analyzer
- Solid State NPA

- Fluctuations

- Reflectometer
- Tangential FIR polarimeter
- High-freq Mirnov coils
 (ω ~ ω_{ci})
- Fast soft x-ray camera

Equilibrium Modeling – EFIT + MSE at low B

sNPA & TRANSP Measure & Model Distribution

Energy (keV)

Low-A Database Can Shed New Light on Confinement Scaling Uncertainties in β and ν^*

- ITER Topics: Resolve differences in β scaling in H-mode confinement; resolve which is a more significant confinement parameter: v* or n/n_{GW}.
- **High priority for 2005-2006**: Joint experiments on the above topics; improve global scaling by adding Low A database.
- Low-A data provides leverage in determining scaling dependence for ITER
- Offers clarifying views into plasma transport and turbulence
- Initial analysis of NSTX data suggests favorable β exponent
- New and planned turbulence diagnostics will enable contributions, jointly with DIII-D and C-Mod

Low-A Data Provide Leverage in Determining Scaling Dependence for ITER

- Firming up confinement scaling may expand ITER operating space and improve performance
- NSTX data helps remove colinearities (β, ρ*, ν*) in moderate R/a data
 - ITER operating point lies within range of NSTX data
 - NSTX provides a factor of 5 increase in range of β and will help resolve this issue

• Probe and challenge toroidicity physics through expanded R/a

- Trapped particles, mode coupling, magnetic shear
- Similarity experiments with DIII-D, identity experiments with MAST

Low-A Plasmas Offer Clarifying Views Into Plasma Transport and Turbulence Properties

• Low B_T

- Larger scale sizes (ρ), turbulence amplitudes → electron-scale turbulence more measurable
- Large rotational shear ($\propto E_r/B$) \rightarrow reduce or suppress long- $\lambda \mu$ instabilities?

• Wide range in $\beta_T (\leq 40\%)$

- NSTX spans the range from electrostatic (low β_T) to electromagnetic (high β_T) \rightarrow Impacts electron transport?
- Greater toroidicity (lower R/a)
 - Theory: non-linear saturation of short-λ (ETG) turbulence due to poloidal coupling, parallel variation → generation of radial streamers?

GS2 Flux Tube Simulations of NSTX Turbulence

U. Maryland

Initial Analysis of NSTX Confinement Data Suggests Favorable β Dependence

Dimensionless confinement scalings derived from normal R/a data contain some ambiguity.

Different assumptions and methods produce different β exponent:

$$\begin{array}{l} \mathsf{B}\tau_{\mathsf{E}} \thicksim \rho_{*}^{-2.7} & \beta^{\text{-0.51}} & \nu_{*}^{\text{-0.31}} \\ \thicksim \rho_{*}^{\text{-2.7}} & \beta^{0} & \nu_{*}^{\text{-0.15}} \\ \thicksim \rho_{*}^{\text{-2.83}} & \beta^{0.48} & \nu_{*}^{\text{-0.42}} \end{array}$$

(Cordey-IAEA '04)

NSTX data suggests a favorable dependence of confinement on β_T from statistical analysis

- Additional dedicated scans in $\beta,\,\nu_*$ are planned in NSTX
- Identity experiments with MAST

NSTX data submitted to ITPA database – full analysis underway

Active MHD Mode Control to Raise β Limit Can Substantially Improve ITER Performance

- **ITER Topic**: Active control of MHD instabilities via conducting structures and additional coils
- **High priority for 2005-2006**: Enhance understanding and mitigation of the effects of RWMs by analysis, experimental verification of control, determination of role of plasma rotation and error fields. Determine control system requirements for diagnostics.
- NSTX provides low-A data to help understand the dissipations that rotationally stabilize RWM
- Study of equilibrium, stability, and control of high β , q-shear & rotation plasmas can contribute
- ITER RWM model may also benefit from NSTX conductor configuration

NSTX Provides Low-A Data to Help Understand the Dissipations that Rotationally Stabilize RWM

- Insight from drift-kinetic theory:
 - Trapped-particle effects at finite ε significantly weaken ion Landau damping, but...
 - Toroidal inertia enhancement modifies eigenfunction when Ω_{ϕ} / $\omega_A > 1/4q^2$

- Experimental Ω_{crit} consistent with scaling $\propto \epsilon / q^2 why?$
- Is dissipation localized to resonant surfaces, or more global?
 Addressing questions above w/ NSTX / DIII-D similarity experiments, and hi-res CHERS
- ST has uniquely high $\omega_{sound} / \omega_A \rightarrow distinguish between <math>\omega_s$ and ω_A scaling

Needed for predicting control requirements for RWM stabilization in ITER

shifted & scaled × 1.1

Study of Stability and Control of High β, q-Shear & Rotating Plasmas Can Contribute

- Sustained operation above the no-wall limit at high β motivates study of shape, RWM, and NTM control physics
 - Potential for improving <u>steady-state</u> Q>5 scenarios in ITER
 - Requires understanding + integration of both passive and active mode control
 - Important for achieving goal of non-inductive operation in NSTX

ITER RWM Feedback Models May Also Benefit from NSTX Conductor Configuration

with active feedback control of RWM

Complex passive conducting structures that require 3D modeling

 \rightarrow NSTX – good test-bed for this research

Present NSTX RWM coil will validate stabilization model up to $C_{\beta} = 0.68$

1.5

1.0

R(m)

2.0

0.0

0.5

ITER inner

2D X-Ray Crystal Spectrometer on NSTX for T_e and T_i Profiles Are Being Considered for Use in ITER

- R. Barnsley et al., Rev. Sci. Instrum. **75**, 3743 (2004): spectrometer design for ITER
- M. Bitter et al, Rev. Sci. Instrum. 75, 3660 (2004) & PRL 2003: validity of concept & resolved spectral issues of interest for comets and stellar flares
- Collaboration: NSTX, C-Mod, KSTAR, LLNL, Columbia U

NSTX Is Contributing Actively to Physics Topics of Interest to Burning Plasmas

- Low-A studies of super-Alfvénic ion driven modes and associated losses are of interest to ITER
- Low-A database can shed new light on confinement scaling uncertainties in β and ν^{*}
- Active MHD mode control to raise β limit can substantially improve ITER performance
- 2-D x-ray crystal spectrometer to measure T_e and T_i on NSTX are being considered for use on ITER