

Seventh International Symposium on Fusion Nuclear Technology (ISFNT-7) May 22 - 27, 2005, Tokyo, Japan

IMPACT OF PLASMA, MAGNET AND WALL PERFORMANCES ON TOKAMAK AND HELICAL REACTOR ECONOMICS

K.YAMAZAKI¹, T. J. DOLAN²

1 Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan 2 International Atomic Energy Agency, A-1400 Vienna, Austria

Outline

- **1. Introduction**
- 2. Assessment Models
 - (1) Physics Model
 - (2) Engineering Model
 - (3) Cost Model
- 3. Benchmark of Model
- 4. Assessment Results
 - (1) Plasma Performance
 - (2) Magnet Performance
 - (3) Wall Performance
- 5. Summary

For Future Reactors, Steady-State and Good Confinement Compact System is Required

Tokamak : Good-Confinement => CD required and inefficient? Helical : Steady-State => Large & Expensive?

Comparative system evaluations are helpful. Related to physics, engineering and economics, comparative assessment will clarify the optimized target and limitations of both systems.

Tokamak Reactor ITER-like Reactor $\beta_N \sim 3$ High Beta Compact Reactor $\beta_N \sim 5$ **ITER-like** Advanced Design

Advanced Design (Example: CREST) Helical Reactor
Heliotron $\langle \beta \rangle \sim 3\%, 5\%$ Modular HeliotronModular Stellarator

CHS-qa like

Physics Models

Tokamak

Confinement $\tau_{E}^{ELMY} =$ $0.0365R^{1.93}P^{-0.63}\overline{n}_{e}^{0.41}B^{0.08}\varepsilon^{0.23}I^{0.97}$

Density limit

$$n_{20_GR} = \frac{I_{MA}}{\pi a_m^2}$$

Beta limit

$$\beta_N / \frac{I_{MA}}{B_T a_m} = 3 \sim 5$$

 $\tau_E^{NLHD-1} = 0.263a^{2.59}R^{0.64}P^{-0.58}\overline{n}_e^{0.51}B^{1.01}$

Helical

 $\tau_{E}(s), a(m), R(m), P(MW), \overline{n}_{e} (10^{19} m^{-3}), B(T), t_{2/3}$

$$n_{20_hel} = 2 \cdot Min \left\{ 0.25 \sqrt{\frac{P_{MW}B_T}{R_m a_m^2}}, 0.35 \frac{P_{MW}}{R_m a_m} \sqrt{B_T} \right\}$$

Based on Recent Scaling

$$\langle \beta \rangle = 5\%$$

Depending on Configurations

Transport Simulation for Both Systems Using TOTAL code.

Engineering Models

Tokamak

Reactor Power Flow

Cost Analysis Models

		Unit Cost		Thickness(m)		Specific Weight	Remarks
			(U=100MY)	inside	outside	(ton/m^3)	
Capital Cost							
D	Direct Cost						
	Fusion Island						
	Blanket	0.2	U/ton	0.45	0.6	4.8	Ferite.Be,Li2O
	First Wall	0.1	U/ton	0.05	0.1	3.9	SS/Frite
	Shield	0.04	U/ton	0.6	1	7.8	20% additional
	TC Magnet	0.12	U/ton			7.9	Nb3Sn
	PC Magnet	0.12	U/ton			7.9	25% of TF/HF Volume
	HC Magnet	0.15	U/ton			7.9	Nb3Sn
	Heating	2	U/MW				ICRF (50% efficiency)
	Current Drive	4	U/MW				NNBI (50% efficiency)
	Support	0.06	U/ton			6	50% of Coil Volume
	Base	0.03	U/ton			6	25% of Coil Volume
	Divertor	0.2	U/ton	0.05	0.1	6.9	2x10% of wall
Balance of Plant		2700	U*(Pf/4000)^0.6			6% addiditonal power
Indirect Cost			2				
time-related Cost			5				
Annual charge			10				
Operating Cost		4% of Capital Cost					
Component replacing							
	Blanket	until maximum flux					10MW/m ² *year
	Divertor		10				
	Heating & CD		2				
Fuel		150	U/yr				
Waste disposal		0.2	Y/kWh				
Decomissioning		0.1	Y/kWh				
Electric conversisionnefficiency		35	%				
Availability		75	%				

Base Case Designs

Tokamak

A_{av}=3.0, κ=2.0, δ =0.5 q₀=1.0, q_a=3.5 <u>fα=0.95</u>

$$I_{p} = 5 \frac{a_{p}^{2} B_{t}}{R_{p} q_{*}} f$$

$$f = \frac{\{1 + \kappa^{2} (1 + 2\delta^{2} - 1.2\delta^{3})\}}{2}$$

$$f_{BS} = \frac{I_{BS}}{I_{p}} = [1.32 - 0.235 \frac{q_{a}}{q_{0}} + 0.0185 (\frac{q_{a}}{q_{0}})^{2}] (\sqrt{\varepsilon} \beta_{p})^{1.3}$$

$$P_{CD} = \frac{n(I_{p} - I_{BS})R_{p}}{0.5}$$

Helical

A_{av}=6.0,L=2, M=10, γ=1.25 $ε_{\rm H}$ =0.05*(1/10) ^{2/3} <u>fα=0.90</u>

$$\frac{B_{\max}}{B} = 2.1\left(\frac{R_0^2}{80S_{coil}}\right)^{0.4} \left(\frac{m}{10}\right)^{0.02} \left(\frac{\gamma_c}{1.2}\right)^{0.05}$$

$$I_{coil} = 5\frac{R_p B_t}{m}$$

$$j_{coil} = \frac{I_{coil}}{S_{coil}} = 1.5\frac{(9.6 - 0.6B_{\max})^{10}}{(1. + (B_{\max}/12)^{1.5})}$$

$$\Delta = 0.14\frac{R_0}{4.0} \{1.5\left(\frac{j_{coil}}{40}\frac{R_0}{B_t}\frac{10}{m}\right)\left(\frac{1.2}{\gamma_c}\right)^{3.5} - 0.5\}^{0.6}$$

 $B_{max} = 13 \text{ T}$ impurity(Z=6) 1%, alpha 5%, Z_{eff}=1.5 T~(1-x²), n~(1-x²)^{0.5} Beta = 5%, P_{elect} = 1GW

Base Case Designs

	Base Tokamak	Case Reactor	Base Case Heliotron Reactor		
	TR-1	TR-2	HR-1	HR-2	
P_electric [GW]	1	2	1	2	
T0 [keV]	30	30	20	20	
<beta>[%]</beta>	5	3	5	3	
beta_N	4.7	2.8	-	-	
B_max [T]	13	13	13	13	
F_wall [MWy/m ²]	15	15	15	15	
R_p [m]	5.20	8.10	12.5	14.4	
B [T]	7.06	8.09	4.60	6.35	
Ip [MA]	9.3	16.6	-	-	
f_BS [%]	69	35	-	-	
P_fusion [MW]	2.69	6.28	2.32	4.64	
L_wall [MW/m ²]	4.91	4.90	1.43	2.17	
H-factor	1.17 (ITER)	0.65 (ITER)	2.68 (ISS)	1.68 (ISS)	
			1.35(NLHD1)	0.75(NLHD1)	
F.I. Mass [kt]	5.0	11.2	12.2	23.8	
Capital Cost [M\$]	4,140	7,270	5,020	8,010	
COE [Yen/kWh](2003)	8.27	7.33	9.52	7.48	
	$\kappa = 2.0$		L = 2		
	$\delta = 0.5$		m = 10		
	$\frac{R_{p}}{\langle a_{p} \rangle}$	$\rangle = \overline{3.0}$	$R_p / \langle a_p \rangle = 5.7$		

Effects of CD Efficiency

COE, Capital Cost vs. Plasma Beta

COE, Capital Cost vs. Electric Power Output

Effects of Maximum Field Strength

Effects of Neutron Flux Limit and Availability

Solid line:

 $f_{avail} = 0.75$

Dotted lines:

$$\begin{split} f_{avail} &= 0.85 / (1 + f_{peak} \Gamma_W t_m / \Phi_w) \\ f_{peak} : \text{Peak factor (1.4)} \\ t_m : \text{Maintenance time(0.5Yr)} \\ \Gamma_w : \text{Neutron wall flux (MW/m^2)} \\ \Phi_w : \text{Flux Limit (MW-Yr/m^2)} \end{split}$$

- (1) High temperature, thermally stable operation with high BS current fraction is preferred in tokamak reactors to reduce CD power. In contrast, low temperature operation is feasible and desirable in helical system to reduce helical ripple transport.
- (2) Capital cost of helical reactors is rather high, however, COE is almost same as that of tokamak reactors, because of smaller re-circulation power (no CD power) and less-frequent blanket replacements (lower neutron wall loading).
- (3) The engineering improvement of increasing maximum magnetic field strength leads to the compact designs. However, it does not mean the strong reduction of COE because of the increase in the wall neutron load.
- (4) The system availability might be affected by this wall lifetime and the blanket maintenance time. A rather-compact, high-availability and steady-state reactor should be explored for the realization of future economical and attractive fusion power reactors.