Fusion Power: I Think We're Lost

Robert L. Hirsch Consultant

November 18, 2002
Presented to the Burning Plasma Assessment Committee
of the National Research Council

How to Tell People Things They Don't Want to Hear?

- **≻**First, Some Physics
- > Second, Some Engineering
- **➤ Third, Some Market Realities**
- **➤**Tokamaks vs Fission Reactors
- **►** How This Unfortunate Situation Happened
- > Conclusions & Recommendation

Key References:

- 1. Hirsch, R.L., Kulcinski, G., Shanny, R. <u>FUSION RESEARCH WITH A</u> <u>FUTURE</u>. Issues in Science and Technology. Summer 1997 & fall 1999.
- 2. Kaslow, J., et al. <u>CRITERIA FOR PRACTICAL FUSION POWER SYSTEMS.</u> EPRI. Spring 1994.
- 3. Perkins, L.J., et al. <u>FUSION- THE COMPETITION AND THE NEED FOR ADVANCED CONCEPTS</u>. LLNL. Sept. 22, 1993 & March 30, 1994.
- 4. National Research Council. <u>ENERGY RESEARCH AT DOE WAS IT WORTH</u>
 <u>IT?</u> National Academy Press. 2001.
- 5. Hirsch, R.L. <u>ENERGY FUTURES FACTORS TO CONSIDER.</u> NAE Regional Conference. Univ. of Wisconsin. March 18, 2002

FIRST, SOME PHYSICS

- Net fusion power from diffusion dominated plasmas requires large plasma volume.
- DT fusion produces <u>high-energy</u> (fast) neutrons.
- Slow neutrons are more easily absorbed than fast neutrons.
- Fast neutrons require <u>large volumes</u> of materials to slow down.
- Neutrons induce radioactivity when absorbed by most materials.
- Neutrons damage materials, limiting their useful life.
- Many but not all fusion reactions give rise to neutrons.

SECOND, SOME ENGINEERING

- In general, the <u>more materials</u> in a piece of equipment, the <u>more expensive</u> it will be.
- In general, the <u>more complex</u> a piece of equipment, <u>the more expensive</u> it is.
- <u>Competition</u> between technologies is a matter of dealing with <u>moving targets</u>.
- <u>Time-value-of-money penalizes</u> high capital cost technologies.

THIRD, SOME MARKET REALITIES.

The 1994 EPRI Fusion Report

- > "...tomorrow will be different social, regulatory, and energy issues will pose moving targets."
- > "To compensate for the <u>higher economic</u> risk associated with new technologies, fusion plants must have lower life-cycle costs..."
- > "...these criteria are likely to remain crucial... a reality checklist.."

 - ECONOMICS PUBLIC ACCEPTANCE REGULATORY SIMPLICITY
- Later: Costs must be 10-20% better than the competition.

Since the EPRI report and the ISSUES article, deregulation of electric power generation has begun in earnest...

- Economics is even more important (cost advantage over the competition).
- High initial capital cost represents an even bigger disadvantage.
- It is even clearer that the competition (other electric power generators) is a <u>moving target</u>.

"Economic value ... must be estimated on the basis of <u>comparison with the</u> <u>next best alternative</u>..." NRC 2001.

TOKAMAK VS FISSION REACTOR CORE COSTS Perkins, et al.

- ➤ 1994 comparison of the then existing <u>ITER core design (real!)</u> to the AP 600 Advanced Light Water Reactor.
- ➤ Not a comparison with the "next best alternative" A comparison with the closest relative.
 - Both ~1.5 gigawatts thermal
 - ITER was without tritium breeding: COST ↑

 - COST DIFFERENCE: FACTOR OF 30!

 Volume:
 25,600m³
 -v- 167m³
 (factor of 154)

 Mass:
 40,560tn
 -v- 630tn
 (factor of 64)

 Cost:
 \$3137M
 -v- \$53M
 w/o fuel (factor of 59)

 \$108M, w/ fuel (factor of 29)

Westinghouse AP-600: Advanced, Passively-Safe, LWR

ITER IS A START. IS IT THE BEST THAT FUSION CAN OFFER?

L.J. Perkins, D.E. Baldwin, J.H. Hammer, Lawrence Livermore National Laboratory, March 1994

The Indisputable Factors at Work

- Net fusion power from diffusion dominated plasmas requires large plasma volume.
- DT fusion produces high-energy (fast) neutrons.
- Fast neutrons require <u>large volumes of materials to slow down</u> for easy absorption.
- In general, the more materials in a piece of equipment, the more expensive it will be.
- It's a huge, hollow torus vs a comparatively small cylinder.

OTHER POINTS FROM THE ISSUES ARTICLES

Hirsch, et al.

- ➤ Because of such high neutron fluxes, "large amounts of ...radioactivity."
- Embrittlement requires <u>replacement of blanket materials</u> "every few years." "...interior...rebuilt by remote controlled robots."
- > Radiation damaged materials <u>disposal "at great expense</u>."
- ➤ Volume of radioactive stainless steel produced is ~10x fission.

SOME UPDATES

- > Current favored lower activation material: FERRITIC STEEL.
 - <u>Initially, roughly the same curries / watt</u> as fission products.
 - Must be carefully handled and regulated.
 - Levels drop to ~1/100 fission at 10,000 years—<u>STILL NOT ZERO</u>.
- > DT tokamaks consume large amounts of blanket structural materials.
 - Effectively "fueled" by blanket structural material.
 - Sustainablity?
- The future of fission reactors isn't clear.

Where Things Went Astray - Remember Fission

- Once upon a time in fission there many interesting concepts:
 - Organic moderated reactors
 - Sodium-graphite reactors
 - Homogeneous reactors
 - Gas cooled reactors
 - All with lots of R & D funding & lots of dedicated, bright people.
- Then "a tough navy engineer" wanted nuclear powered submarines.
 - He needed something that would work reliably.
 - His choices: Pressurized & Boiling Water Reactors.
- What's in the market today? Products of pragmatic, tough engineering!
- Fusion has not benefited from competition-hardened engineers.

SOME FINAL THOUGHTS

- ➤ What's the <u>definition of success</u> in fusion research?
 - To some <u>We've demonstrated net power</u>. "Build it and they will come."
 - To Policy-Makers: We've <u>developed a cost-effective</u>, clean source of <u>electric power</u>.
- ➤ Winning a big-time competition that has clear rules requires people trained and experienced in that game.
 - Physicists in fusion are "necessary but not sufficient."

Conclusions & Recommendations

- > The arguments against the commercial viability of DT tokamaks are strong and compelling.
- Then why spend money and time on a huge, expensive DT burning plasma experiment?
- ➤ Needed a careful review by a panel of pragmatic, commercial world engineers.

Where else? The National Academies, but on the engineering side of the house.

Post Script

- Fusion a rich array of mostly unexplored possibilities & one of the few alternatives for a sustainable future.
 - Other fusion concepts conceivable
 - Other fuel cycles
 - Other physics
- Let's take advantage of all that has been learned and search for a concept or concepts that stand a chance in the commercial market.
- Let's be sure that commercial engineers watch over the program, providing guidance & stopping dead-end concepts at the right time.

I believe that we can make fusion happen.