Laser Direct Drive: Scientific Advances, Technical Achievements, and the Road To Fusion Energy

Presented by John Sethian Naval Research Laboratory

Fusion Energy with Lasers and Direct Drive

Why we believe direct drive with lasers can lead to an attractive power plant

1. Simplest target physics:

- 2. Laser (most costly component) is modular
- 3. Separate components lower cost of development
- 4. Simple spherical targets: facilitates mass produced "fuel"
- 5. Power plant studies economically attractive

6. We have made a lot of progress!!

We are committed to Direct Drive for the Fusion Energy Mission

Two laser options for Direct Drive: KrF and DPPSL Both have potential to meet the IFE requirements

Electra KrF Laser (NRL) λ = 248 nm (fundamental) Gas Laser

See talk by Frank Hegeler Thursday PM Mercury DPPSL Laser (LLNL) $\lambda = 351 \text{ nm} \text{ (tripled)}$ Solid State Laser

See talk by Chris Ebbers Thursday PM We encourage competition. It leads to innovation and a better product. And leads to it faster

KrF lasers have advantages for fusion energy

PHYSICS

- Deeper UV (248 nm vs 351 for glass):
 - -- Greater mass ablation rate and pressure at given intensity
 - -- Higher threshold for deleterious laser plasma instability (LPI) ~1.8x (so maximum ablation pressure is further increased)
- Focus of KrF beams can be readily "zoomed" to follow imploding pellet
 -- increases coupling by 30%
 Nike single beam focus
- KrF has most uniform pellet illumination \succ .
 - -- 0.2% non-uniformity overlapped beams

ENGINEERING

- Industrial robust technology (used in industry, medical applications)
- Gas laser medium is easy to cool (tough to break gas)

Advances and Achievements

- target design
- lasers
- final optics
- target fabrication and engagement
- chamber

New Direct Drive Designs: Power plant class gains, much smaller laser

Shock Ignition predicts comparable gains as Fast Ignition... *without the complexities*

Shock Ignition: Shell accelerated to sub-ignition velocity (<300 km/sec), Ignited by converging shock produced by high intensity spike

High resolution 2-D simulations show shock ignition designs are robust against hydro instabilities

250 kJ shock ignited target – NRL FASTRAD3D simulations

Andy Schmitt NRL

Target physics codes have been benchmarked with experiments on Nike Laser

One challenge, in <u>any</u> laser target design ----Predicting Laser Plasma Instabilities (LPI)

Laser driven instabilities cause problems: ➢ Produces high energy electrons that preheat DT fuel
➢ Scatters laser beam, reducing drive efficiency

Nike experiment to study Laser Plasma Instability at prototypical intensities (up to 10¹⁶ W/cm²)

Targets can be cryogenic -e.g. liquid deuterium

15 Jim Weaver NRL

Nike Experiments are encouraging: **Higher threshold for KrF** Onset of LPI ~ 3×10^{15} , above target design point

brt

LLNL (LASNEX) simulations suggest hot electrons induced by spike may be a <u>good</u> thing

Gain 60 target may be able to withstand hot electrons up to 100 keV

17

Advances and Achievements

- target design
- KrF lasers
- final optics
- target fabrication and engagement
- chamber

Electra Krypton Fluoride (KrF) Laser - electron beam pumped gas laser

see talk by Frank Hegeler (Thurs PM) for details

Advanced Solid State Pulsed Power Demo: 1 M shots at 5 Hz, 400,000 shots @ 10 Hz

Based on Commercial switches (component life > 300 M shots)

> > 80% efficiency

➤Attractive cost: < \$ 2 M for Electra (15 kJ)</p>

Malcom McGeoch (PLEX) Steve Gldden (APP)

see talk by Frank Hegeler (Thurs PM) for details

Hibachi foil durability has been a challenge

Plasma Physics to the rescue

Penning Ionization Gauge

Spectrometer tuned to look at Ar emission (>700 nm: below Ar, above everything else)

J Giuliani & R Jaynes (NRL)

The Smoking Gun

Penning Ionization Gauge Pinhole Early Notification

SW-FL

Increasing A-K gap 10%, lowering charge volts 15%: Eliminated voltage reversal, *and hence foil emission*

Electra continuous durability has been extended to the 90,000 shot range

Electra Cell after 30,000 shot continuous laser run

90,000 laser shots (10 hrs) continuous @ 2.5 Hz 150,000 laser shots on same foils @ 2.5 Hz 50,000 laser shots on same foils @ 5 Hz 300,000 laser shots in 8 days of operation 500,000 e-beam shots since 12/31/2008

Most runs NOW limited by pulsed power

A video starring Electra

Advances and Achievements

- target design
- lasers
- final optics
- target fabrication and engagement
- chamber

The final optics train

CAD Drawing of Final Optics, Coupled with MCNP simulation of Neutron flux

Mohamed Sawan (Wisconsin) Malcolm McGeoch (PLEX)

GIMM laser damage threshold: > 3.5 J/cm² @ 10 M shots

29 Mark Tillack (UCSD)

Dielectric mirror appears to resist predicted neutron fluence (0.02 dpa) on second mirror

The "key": Match neutron-induced swelling in substrate and mirror layers

Experiment:

Expose in HIFR (ORNL Reactor) Prototypical fluence, temperature

Laser Damage Threshold

 (Al_2O_3/SiO_2)

Measurements:

Reflectivity Laser damage threshold

Tom Lehecka (Penn State)

Mohamed Sawan (Wisconsin)

30

No dpa0.001 dpa0.01dpa0.1 dpa86-87%84-86%78-83%83-84%

Advances and Achievements

- target design
- lasers
- final optics
- target fabrication and engagement
- chamber

Target fabrication:

- Mass produce foam shells that meet specs
- Fluidized bed for mass cryo layering
- Estimate Cost < \$0.16 each</p>

Recent target fabrication advances: Higher yield in non-concentricity

Apply thin solid coat on foam during gellation

General Atomics

Additional coating advances made at GA

Target Engagement: Concept based on detecting "Glint" off the target.

Target Engagement: Bench test: Mirror steers laser beam to target within 34 um. Need ~20

Lane Carlson (UCSD)

Advances and Achievements

- target design
- lasers
- final optics
- target fabrication and engagement

chamber

The "first wall" of the reaction chamber must withstand the steady pulses of x-rays, ions and neutrons from the target.

Chamber options

Solid wall/vacuum	Simplest Eases laser / target issues <i>Materials challenge</i>
Magnetic Intervention/vacuum	Small chamber <u>Really</u> eases laser / target issues <i>The ion dumps</i>
Replaceable solid wall/vacuum Sawan, Wed SP3B-16	Eases laser / target issues Mechanical/operational complexity
Gas in chamber Gentile, Wed SP3B-21	Smaller chamber Challenging laser / target issues Clearing Chamber (plasma)
Thick liquid walls	No materials issues (inc neutronics) Challenging laser / target issues Droplet formation/ complexity 38

Solid Wall Chamber: Experiments/Modeling

Thermo-mechanical cyclic stress: Mostly Solved

Helium Retention: Remaining Major Challenge

First "Nano-Engineered" Tungsten helium retention experiments are encouraging

Magnetic Intervention: Cusp magnetic field keeps ions off the wall (in Plasma Physics terms: Conservation of $P_{\theta} = rA_{\theta} = 0$)

initially spherical

it encounters cusp

lons, at reduced power, leak into external dumps

1. Physics demonstrated in 1979 NRL experiment:

R. E. Pechacek, et al., Phys. Rev. Lett. 45, 256 (1980).

2. NRL experiment modeled by D. Rose at Voss Scientific (2006)

An example of a Magnetic Intervention Chamber

lons deflected downward by magnetic fields lon energy absorbed in Gallium Rain lon Dissipaters™

Chamber radius: 5 m						
		Point cusps:	16 T			
		Main coils:	0.75 T			

Energy absorption in Ga: 85% in first 10 mg/cm² 15% in next 100 mg/cm²

Only first layer evaporates

Gallium inventory enough so mean temp rise < 300°C

NB Vapor P of Ga = 10⁻⁶T at 720 C

A.E. Robson, NRL (ret)

Objectives for next two years

- Nike: Experiments/theory show physics advantages of KrF.
 -- Refine/validate high gain designs
- •Electra: Demonstrate >1 M shots continuous laser operation.
 - -- with technologies capable of 300 M shots (e.g. all solid state)
- •Develop critical IFE technologies.
 - -- Mirrors, chamber concept(s), target fabrication / tracking, materials

If these are successful, next is a three stage program to IFE

A three stage plan for Laser Fusion Energy

<u>Stage I</u> : Develop full size components

- Laser module (e.g. 18 kJ 5 Hz KrF beamline)
- Target fabrication/injection/tracking
- Chamber design
- Refine basic pellet physics

Single 5 Hz FTF beamline engages injected targets

500 kJ FTF

44

Stage II Fusion Test Facility (FTF)

- Demonstrate physics / technologies for a power plant
- Develop/ validate fusion materials and structures
- Operating: ~2022
- Significant participation by private industry

Stage III Prototype Power plant(s)

- Electricity to the grid
- Transitioned to private industry

What makes a credible fusion energy program?

fusion

The only function of economic forecasting is to make astrology look respectable.

John Kenneth Galbraith

What have we accomplished? (1 of 2) or, the justification for pursuing an <u>energy</u> program

- KrF based target designs show energy class gains < 1 MJ.
 Designs backed with experimentally verified codes
 KrF advantages demonstrated (LPI, hydro, uniformity).
 - Need experiments at higher energies, more robust designs

- KrF lasers demonstrated, with scalable technologies: Rep rate (2.5 - 5 Hz) Efficiency (> 7%) (with individual components) High energy rep-rate operation (250-700 J). Continuous operation (10 hr) Credible path to durability
 - Need integrated 1 M shot continuous demonstration

What have we accomplished? (2 of 2)

- Optics components resistant to prototypical neutrons, laser damage
 Need larger sizes, need extension to 300 M shots (from 10 M)
- Can mass produce high precision foam shells for targets
 - Need higher yield, Need gas tight coating
- Demonstrated smooth DT ice over foam layer
 - Need mass production layering demonstration (Fluidized bed)
- Demonstrated target engagement using glint technique
 - Need another 14 um pointing (now at 34, need 20)
- Several viable chamber concepts, backed with experiments/theory
 - Need refinement, integrated, economical design
- Have conceptual designs for ancillary components:
 - 47
 Blanket, tritium handling/processing, vacuum system, power conversion

The Vision...A plentiful, safe, clean energy source

A 100 ton (4200 Cu ft) <u>COAL</u> hopper runs a 1 GWe Power Plant for <u>10 min</u>

Same hopper filled with *IFE targets*: runs a 1 GWe Power Plant for 7 years

The Research Team

19th HAPL meeting Oct 22-23, 2008 Madison WI 54 participants, 10 students

Government Labs	Universities	Industry1.General Atomics2.L3/PSD3.Schafer Corp4.SAIC5.Commonwealth Tech6.Coherent7.Onvx	9.	Voss Scientific
1. NRL	1. UCSD		10.	Northrup
2. LLNL	2. Wisconsin		11.	Ultramet, Inc
3. SNL	3. Georgia Tech		12.	Plasma Processes, Inc
4. LANL	4. UCLA		13.	PLEX Corporation
5. ORNL	5. U Rochester, LLE		14.	APP
6. PPPL	6. UC Berkeley		15.	Research Scientific Inst
7. SPNII	7. UNC		16.	Optiswitch Technology
7. SKNL	8. Penn State Electro-optics	8. DEI	17.	ESLI