

21st IEEE/NPSS Symposium on Fusion Engineering The Hilton Hotel, Knoxville, Tennessee 26-29 September 2005

Current Status of Experimental Study and Device Modifications in JT-60U

K. Kurihara and the JT-60 Team Japan Atomic Energy Research Institute

Outline

- **1. Modifications for Long Pulse Operation**
 - 15 s =>65 s
 - Field Coil Power Supplies
 - Heating Devices: P-NBI, N-NBI, ECH, LHH
- 2. Extension of Advanced Tokamak (AT) Operation
- 3. Exploration to AT Operation with a Higher β_{N} and f_{BS} Steady-state Plasma
 - 3.1 Precise Plasma Equilibrium Observer
 - **3.2 Current Profile Feedback Control**
 - 3.3 Ferritic Steel Tiles Insertion for TF Ripple Reduction for AT Research
- 4. Summary

Steps toward a Steady-State Reactor

Steps toward a Steady-State Reactor

1. Modifications for Long Pulse Operation

JAERI

SOFE05

1.1 Modifications for the Field Coil Power Supplies

- a. Poloidal Field Coil Power Supplies
 - Pulse heat load (I²t) for the SCR circuit be unchanged for 65 s operation by decrease in the primary voltage from 18 kV to 11 kV.
- **b.** Toroidal Field Coil Power Supply
 - Pulse heat load (I²t) for TF coil be unchanged in 65 s operation by decrease in Bt strength.
- c. The1000-s Integrators for magnetic measurements (the original capability < 10 s.) have been installed.

1.2 Improvements in NB Systems (P/N-NB)

1.3 Improvements in RF Systems (EC, LH)^{SOFE05}

65-s Discharge Movie

Ip=730 kA, B_t=2 T, P_{NBI}=9 MW, P_{ECRF}=0.48 MW ELMy H-mode was sustained for 30 s.

SOFE05

SOFE05 2.1 Long Sustainment of High β_{N} - High β_p H-mode Extended Pulse -Ip = 0.9 MA, $B_t = 1.56 T$, $q_{95} \sim 3.1 - 3.2$, $H_{89PL} \sim 1.9$ $\beta_{N}=2.3$ for 22.3s(~13.1 τ_{R}) E44092 15 10 **P**_{NB} Iр 0.5 N-NB (MA) (MW) T_{e,i} 2 N = 2.3β_N Man Mary demonst 5 (keV) Ω n_e/10¹⁹ D_{α}

 $\tau_R \equiv \mu_0 < \sigma_{NC} > a^2/12$ D.R. Mikkelsen, Phys. Fluids B 1 (1989) 333.

time (s)

15

20

25

30

10

5

(m⁻³)

(a.u.)

Long Sustainment of High f_{BS} SOFE05 2.2 - Reversed Shear ELMy H-mode, Nearly Full CD -Ip=0.8MA, Bt=3.4T, q₉₅~8.6, n_e/n_{GW}~0.55 $\beta_{N} \sim 1.7$, f_{BS}=75%, f_{CD}=20% for 7.4s (~2.7 τ_{R}) E43046 $P_{NB} P_{NB}^{inj}(co) =$ p 0.5 10 Mennerst ringfrem Marallian trace during (MW)^{3.2MW} **(MA)** FB control β_N, β_{N0} V_{loop} 0 nearly full CD **(V)** $\mathsf{P}_{\mathsf{rad}}$ No strong (MW)⁰ impurity $\bm{D}_{\alpha}^{\ \, \text{div}}$ accumulation Z_{eff}~3 (au) 8 10 12 6 time (s) ration was limited by NB injection.

2.3 Quasi Steady State High β_N Plasma

Achievements of High $\beta_N \& f_{BS}$

3. Exploration to AT operation with a higher β_N and f_{BS} steady-state plasma

For a higher β_N and f_{BS} steady-state plasma, Requirements are listed: _____Enlarge

- Wall stabilization
- - Real-time Precise Equilibrium Observer (3.1)

a plasma

size

- Current Profile Feedback Control (3.2)
- More absorbed heating power

decrease ion loss & heat load on LH antenna
Ripple reduction

- Ferritic Steel Plate Insertion (3.3)

3.1 Real-time Precise Equilibrium Observer

3.2 Current Profile Feedback Control

3.2 Current Profile Feedback Control (Cont'd)

q(r) control in higher f_{BS} and/or β_N plasmas is a next target.

3.3 Ferritic Plate Insertion for TF Ripple Reduction Expected Effects in AT Research

TF ripple reduction will bring about extensive improvements in

- MHD stability,
- Controllability of current profile in a longer period,
- Absorbed heating power,

and provides the basis towawd

- β_N beyond the ideal limit with the free boundary,
- Longer sustainment of a high- β_N plasma, and
- Longer sustainment of a high-f_{BS} plasma.

3.3 Ferritic Plate Insertion for TF Ripple Reduction Effects Comparison -with and without FP-

Installation of Ferritic Steel Plates (1/2)

Material: 8Cr2W steel Magnetization: ~1.8 T Thickness: 23 mm

May, 2005

June, 2005

July, 2005

Installation of Ferritic Steel Plates (2/2) SOFE05

The installation work has been just completed in Aug. 2005.

Summary (1/2)

SOFF05

- Modifications of facilities were completed: Discharge pulse length: 15 s to 65 s.
- 65-s pulse discharge has been successfully achieved with 30-s H-mode sustainment.
- In extending advanced tokamak (AT) operation, remarkable results were attained:
 - a. High β_p H-mode plasma with $\beta_N \sim 2.3$ for 22 s.
 - b. RS ELMy H-mode plasma with f_{BS}~75% and

 $\beta_N \sim 1.7$ for 7.4 s under nearly full (95%) CD.

c. $\beta_N \sim 3$ for 6.2 s with suppressing NTM by ECCD or by flattening q profile.

Summary (2/2)

SOFE05

For AT operation with a higher β_N and f_{BS} in longer pulse discharge,

- Plasma Precise Equilibrium Observer has been developed.
- Current Profile Control has been demonstrated.
- Ferritic Steel Tile Insertion for TF Ripple Reduction has been just completed.

We will restart experiments in the coming Nov.

Now we are ready to make further explorations into AT plasma operation toward ITER and a fusion DEMO reactor.