## Fusion Energy An Industry-Led Initiative

**September 10, 1993** 

## A Team Effort

TRW

Rockwell

SAIC

Bechtel

General Dynamics

Lawrence Livermore National Laboratory University of California at Los Angeles

- Global Per Capita energy usage will increase even under the best assumptions of conservation
- We cannot meet these needs with our current approaches and satisfy environmental needs
  - Atmospheric carbon release
  - Non-renewable



Global per capita energy usage

The Cost and Benefit of Energy Technology in the Global Context Dr. John F. Clarke October 1991

## **Fusion: The Most Desirable Form of Energy**





ALTERNATE ENERGY FORMS

SOURCE: "SAFETY AND ENVIRONMENTAL ISSUES FOR FUSION ENERGY: ACHIEVING THE POTENTIAL," JOHN P. HOLDREN, CLASS OF 1935 PROFESSOR OF ENERGY, UNIVERSITY OF CALIFORNIA, BERKELY

## **Fusion is a Solution**

- Big business not big science
  - International Competitiveness issue \$26T/yr energy market with \$300B/yr future market for fusion power stations (10% of market assumption)
  - Industrial base is needed to capitalize on this market opportunity
- Comprehensive program is needed for success
  - Identify and focus on key issues requiring resolution for DEMO and Power Plant
  - Add content to assure a complete program
  - Involve industry with expertise in implementation of complex multi-disciplined programs

## **U.S. Energy Supply and Needs**

- Coal, oil and natural gas will continue to be the dominant sources of energy in the U.S. during the next thirty years
  - Coal for electrical power production
  - Oil for transportation
  - Natural gas for heating/electrical power
  - Nuclear fission's role is diminishing
- Global warming from greenhouse gases and pollution may require shift from fossil fuels
- Domestic supply of oil is decreasing by 10% per decade but growing usage of natural gas is occurring
- Nuclear fission is not being pursued in the U.S. because of poor public acceptance and regulatory response
  - Radioactive waste and safety concerns

#### The long term sources of energy are

- Geothermal energy
- Sunlight and its derivatives
- Fission energy based on breeders
- Clean coal (several hundreds of years)
- Fusion energy

## U.S. Energy Supply and Needs (continued)

## Fusion offers the following advantages when compared to the other long term sources

- Reduced impact on ecological and geophysical processes and lower cost when compared to geothermal, biomass and sunlight
- Reduced radiological and nuclear materials proliferation hazards when compared to fission breeders
- Reduced emissions to the atmosphere when compared to coal
- Global warming, pollution and national economic competitiveness make it important to have a viable fusion energy option by the 2020's

## High Energy Import Cost Will Decrease U.S. Competitiveness in Energy Intensive Industries and Increase Trade Imbalance Problems



outside of US

\* Congressional assessment

TR#3-9/10/93-L1-6

## The Status of Magnetic Fusion Energy Development

- Fusion research has been supported worldwide since the 1950s as a promising energy option
- The promise of fusion:
  - Unlimited fuel supply from seawater universal availability
  - Safe and environmentally attractive
    - no greenhouse gases, acid rain or pollution
    - minimal radiological and nuclear proliferation hazards
    - no possibility of a runaway or meltdown
    - minimal land use and mining
  - Monetary costs are comparable to other long-term energy options
- JET and TFTR are establishing the scientific feasibility of the Tokamak approach to fusion
  - JET has achieved energy equivalent breakeven with deuterium
  - TFTR is expected to demonstrate energy breakeven with deuterium and tritium next year
- Long pulse, ignited burn and the physics of reactor relevant Tokamaks remain to be demonstrated in ITER
- Safe, environmentally attractive and economic designs of commercial fusion remain to be developed and demonstrated

## **Suggested Objectives for the Fusion Program**

#### ➤ Objectives

- 1) Establish fusion as a viable energy source for the U.S. by 2025
  - Develop a realistic approach to acquire engineering, material, and operational data for a demo plant by 2025
  - Satisfy environmental, safety and economic concerns early
- 2) Position U.S. industry to become a competitive world supplier of fusion power
  - Establish U.S. commercial preeminence
  - Establish a sustained industrial program with design, fabrication and operational experience
- 3) Participate in the International program to reduce the national cost of fusion development
  - Commit to build ITER

## A Suggested U.S. Strategy for Fusion

#### Objective 1

• Establish fusion as a viable energy source for the U.S. by 2025

#### • U.S. Strategy Towards Objective 1

- Provide the comprehensive set of required data for fusion development by utilizing a complete set of machines
- Assure that ITER maintains its current schedule
- Add program content to provide data in time for a 2025 demo design
  - Long lead engineering and environmental issues
  - Operational and safety issues
- Gain public, environmentalist and utility support for the demo

### What is Needed for Demo

Complete set of requirements

- Physics and Engineering basis
- Nuclear technology
- Operability and maintainability
- Environmental desirability
- Economic impact
- Safeti/
- Balanced tradeoff of these requirements to achieve optimal design
- Verification program to remove uncertainties and complete design in parallel
- Significant involvement of Aerospace industries that have performed this task for significant national programs
  - Ballistic Missile Development
  - Apollo program

## **R&D Tasks to Be Accomplished Prior to DEMO**

- 1) Plasma
  - Confinement
  - Divertor
  - Disruption control
  - Current Drive
- 2) System Integration
- 3) Plasma Support Systems
  - Magnets
  - Heating
- 4) Fusion nuclear technology components and materials (blanket, first wall, high performance divertors)
  - Materials combination selection
  - Performance verification and concept validation
  - Show that the fuel cycle can be closed
  - Failure modes and effects
  - Remote maintenance demonstration
  - Reliability growth
  - Component lifetime

#### ITER will address most of 1, 2 and 3

Fusion Nuclear Technology (FNT) components and materials require dedicated fusion-relevant facilities parallel to ITER

## Prudent and Optimum Path to DEMO Requires Three Parallel Facilities



- ITER Fusion core (plasma), system integration, plasma support technology
- **VNS** (<u>V</u>olumetric <u>N</u>eutron <u>S</u>ource) Dedicated fusion facility to test, develop and qualify fusion nuclear technology components and material combinations (>10 m<sup>3</sup> test volume)
- **IFMIF** ("Point" Neutron Source, Materials Test Facility,MTF) Small volume (<0.001 m<sup>3</sup>), high availability facility to address radiation effect lifetime issues



Complementary Approach (Reduced Technology Burden on ITER)



## Fusion Nuclear Technology Development Approach





## **U.S. Magnetic Fusion Energy Development Strategy**

Not committed to in current program

# A Suggested U.S. Strategy for Fusion (continued)

#### • Objective 2

 Position U.S. industry to become a competitive world supplier of fusion power

#### U.S. Strategy Towards Objective 2

- Continue industrial effort in design and siting of ITER
- Establish significant meaningful industrial role in TPX
- Assure a substantial, sustained U.S. industry-led fusion engineering project
- Commit to industry design and siting studies of needed facilities (MTF and VNS) now

## Volumetric Neutron Source (VNS)

#### Objectives

- Provide the engineering basis for economical and environmentally sound designs for fusion power plants
- Establish safety and design standards for the fusion power industry
- Gain utility acceptance prior to demo
- Provide the basis for competitiveness in fusion development and commercialization by a U.S. industry-led design activity

#### > Approach

- Establish an industry led team and design an engineering test reactor to accomplish
  - Testing of fusion blankets, high heat flux components and other nuclear technologies
  - Qualification of components and subsystems that have high impact on economics, environment and safety
  - Maintainability and reliability qualification
  - Operational experience

## Volumetric Neutron Source (VNS) (continued)

#### Key features and operating parameters

- Industry-led and operated
- Size is small relative to ITER
  - One-tenth of the plasma volume
- Based on established Tokamak physics
- 100-200 MW of fusion power
- 30% availability with continuous operation for several weeks
- Greater than 10 m<sup>2</sup> of surface area with neutron fluxes of 1 MW/m<sup>2</sup>

## **The VNS Design Will Use Existing Tokamak Physics Base**



VNS (\$4-5B)

0.88

0.75-8 m

3.25-3.5m

4.2T

150-200MW

1-1.2

3

## Problem – Increased Funding A California Industry-led Initiative

- California needs major federal projects to offset the impact of the declining defense budgets\*
  - 178,000 jobs lost, 19% share of DoD loss, 3 times any other state
  - A politically important State
- Federal funds are being made available for the defense industry conversion to commercial applications
  - Fusion development could be to the high-tech California defense industry what aerospace has been
  - The business potential for commercial fusion power could be greater than \$100B/yr
  - Fusion energy addresses the need for a long range economic, environmentally sound source of energy

## A California industry-led fusion initiative should be considered for these funds

- Industry has the capability to take the lead on VNS design and siting
- An early fast start on VNS design provides jobs now
- Positions U.S. industry for a prime role in fusion energy
- Initiates a substantial industry program now

\*\*Adjusting to the Drawdown\* - report of Defense Conversion Commission, Dec. 1992

Use <u>new</u> federal funds to create a fast track schedule which has early impact on jobs and makes a major commitment by 1996

|                             | <u>FY '94</u>                                                                | FY '95                    | <u>FY '96</u>                                                       | <u>&gt;FY'96</u>              |
|-----------------------------|------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------|-------------------------------|
| Funding                     | \$25-50M                                                                     | \$100M                    | \$150M                                                              | >\$250M                       |
| Milestone                   | Program plan<br>conceptual design,<br>design start, site<br>characterization | Design and site selection | Complete<br>design, gain<br>International<br>commitment<br>to build | Construction<br>and operation |
| Employment<br>(direct only) | 400                                                                          | 1000                      | 1500                                                                | >5000                         |

Form industry-led team (defense, energy engineering, utilities, national laboratories and universities)

# Gaining Support for the Initiative *(continued)*

#### Gain support for VNS in the current fusion program

#### • Seek California legislative and administration support

- Increases chance for a major fusion facility
- More jobs now
- Seek Federal administrative support from the Clinton administration officials who are responsible for:
  - Helping the California community
  - Defense alternatives, nuclear non-proliferation, jobs and economy, science and technology and energy
  - Show that this project is an excellent candidate for defense conversion funding

Seek congressional support for same reasons

### **Status of California Activities**

- California Trade and Commerce Department assigned lead by Governor Wilson for California ITER task force
- California Red Team of leading citizens is being formulated by Trade and Commerce
  - Series of meetings planned for September and October
  - Recommendation for membership submitted by TRW and UCSD
- Opening speech at IAEA meeting hosted by UCLA will be given by Mr. Loren Kaye of California Department of Trade and Commerce

# A Suggested U.S. Strategy for Fusion (continued)

#### • Objective 3

Participate in the International program to reduce the national cost of fusion development

#### • U.S. Strategy Towards Objective 3

- Formulate and gain commitment to a set of international facilities such that all parties find it worthwhile
  - ITER (\$8-10B)
  - VNS (\$2-3B)
  - MTF (\$0.5-1B)
  - Other (\$1.5-2B)
- Promote the idea that the host pays a larger share of the construction costs
  - Participants should pay for what they get

#### **U.S. cost Strategy Towards Objective 3**

 Estimated cost of U.S. participation for two scenarios (assumes host pays 60% of the costs)

|                 | Total          | ITER at        | VNS at         |
|-----------------|----------------|----------------|----------------|
|                 | Cost           | U.S. Síte      | U.S. Site      |
| <b>Facility</b> | <u>\$B</u>     | <u>\$B</u>     | <u>\$B</u>     |
| ITER Site       | 8.0-10.0       | 4.8-6.0        | 1.6-2.0        |
| VNS Hardware    | 2.0-4.0        | 0.6-0.8        | 1.8-2.4        |
| MTF Hardware    | 0.5-1.0        | 0.1-0.2        | 0.1-0.2        |
| Other           | <u>1.5-2.0</u> | <u>0.3-0.4</u> | <u>0.3-0.4</u> |
| COST            | 12.0-17.0      | 5.8-7.4        | 3.8-5.0        |

- If U.S. wins ITER site, VNS will add less than \$800M over 15 years
- If U.S. loses ITER site, VNS will provide an alternative

## Rationale for Fusion Development Program with TPX, ITER, MTF and VNS

- Divide the missions and conquer the fusion demonstration problem
  - TPX Optimize the physics for reactor relevant Tokamaks with steady state operation
  - ITER Demonstrate and optimize ignition and burn physics of Tokamak reactors. Demonstrate fusion technologies and serve as an integrated test bed
  - MTF Demonstrate advanced material solutions through accelerated testing to high fluence of material coupons
  - VNS Demonstrate engineering and operational solutions which make Tokamak power plants safe, environmentally attractive and economical
  - DEMO Combine all the resulting solutions into a fusion power demonstration plant

## Solutions Which are Needed Prior to the Construction of a Demonstration Power Reactor

| REQUIRED SOLUTION                                                                    | PRIMARY FACILITY |
|--------------------------------------------------------------------------------------|------------------|
| Physics/Technology                                                                   |                  |
| Current drive for steady state operation                                             | ТРХ              |
| Profile tailoring to improve beta and reduce transport                               | ТРХ              |
| Plasma heating, fueling and disruption control                                       | ITER             |
| Plasma ignition and sustained burn                                                   | ITER             |
| Divertor power handling and particle control                                         | ITER             |
| Materials                                                                            |                  |
| Qualification of structures, components and subsystems with low activation materials | VNS              |
| Qualification of low activation materials to full lifetime                           | MTF              |
| Radiation-resistant welds, insulators and conductors                                 | MTF              |

.

# Solutions Which are Needed Prior to the Construction of a Demonstration Power Reactor (con't)

| REQUIRED SOLUTION                                                            | PRIMARY FACILITY |
|------------------------------------------------------------------------------|------------------|
| Engineering/Technology                                                       |                  |
| Economical and environmentally acceptable fusion power and breeding blankets | VNS              |
| Moderate availability operation (30%)                                        | VNS              |
| High maintainability and reliability                                         | VNS              |
| Safe and environmentally acceptable tritium fuel cycle                       | VNS, ITER        |
| Shielding/neutronics in Tokamak geometry                                     | VNS, ITER        |
| Large scale magnets and structures                                           | ITER             |
| Demonstration of safe and environmental acceptable fusion power production   | VNS              |

#### Proposed Magnetic Fusion Energy Development Strategy with VNS



\*Referred to as Blanket Test Facility in U.S. MFE strategy.

JM#3-K3c-4/22/93

## **Requested Help from DOE**

#### Incorporate the strategy discussed in the DOE Fusion Strategy

- Achieve a full set of programs to enable a 2025 demo and to attract full international participation
- Focus on engineering and operational solutions to environmental, safety and economic issues
- DOE support and/or leadership to identify defense conversion funds to allow early industry-led VNS design start
- Early ITER and VNS industry-led siting studies to position the U.S. for a major project
- Seek to have MTF and VNS an element of the International program
- DOE enthusiasm to establish and manage the program
- Technical support from the DOE National Labs and Universities doing fusion research

## Summary

#### Objectives

- A logical, complete plan for acceptance of fusion energy and a 2025 Demonstration Power Reactor
- Added support and funding to the magnetic fusion energy program
- Increased probability of commitment to ITER construction and operation with full International participation
- U.S. Industrial competitiveness in fusion power

#### Approach

- Add and accelerate MTF and VNS
- Address need to bolster California economy and offset defense reductions
- Use combination of ITER, VNS, MTF and other to provide an attractive International program set
- An industry-led team to design VNS and site VNS/ITER
  - Bechtel, General Dynamics, Rockwell, SAIC, TRW, University of California and Lawrence Livermore National Lab