Merging Beamlet Experiment Review

May 10, 2004

Injector Group: Joe Kwan (experiment) Glen Westenskow (experiment) Dave Grote (theory) Irv Haber (theory) Erni Halaxa (designer) Gary Freeze (Mech. Tech) Bob Hall (Elec. Tech)

Ion Beams for Heavy Ion Inertial Fusion

Power amplification to the required 10¹⁴-10¹⁵ W is achieved by beam combining, acceleration and longitudinal bunching.

- Heavy ion beams have significant space-charge effects
- Multiple beams provide better target illumination symmetry and a better match to the beam transport limits.

HIF Drivers require Injectors of Bright Beams

Ion mass	> 100 amu for driver, 39 amu for HCX		
Total charge delivered	~ 1 mC		
Beam current per beam	~ 0.5 ampere (transport limit)		
Delta I/ I	$\pm 0.2 \%$		
Total beam current	\geq 50 ampere		
Number of beams	≈ 100		
Injector voltage	~ 1.5 - 2.0 MV		
(Delta V)/ V	$\pm 0.1\%$		
Line charge density per beam	$\geq 0.2 \ \mu C/m$		
Pulse length	$pprox 10$ - 20 μs		
Rise time	< 1 µs	Achieved parameters are in red fonts	
Current density uniformity	± 10%		
Emittance (each 0.5 A beam)	< 1 π -mm-mrad (adequate, but smaller is better)		
Life time	$\sim 5 \text{ Hz x } 3.15 \text{x} 10^7 \text{ sec/yr} = 1.6 \text{x} 10^8 \text{ pulses}$		

Traditional HIF Injectors use large surface sources

- Surface ionization source diameter ≥ 10 cm, solid emitter boundary.
- Current density < 10 mA/cm² of K⁺.
- 750 kV pre-accelerator before ESQ.

Specifications:

1.8 MV 0.6 A K⁺ 1 π-mm-mrad

Good agreement between experimental results and simulation predictions

10-cm diameter K+ Alumino-silicate source

The Heavy Ion Fusion Virtual National Laboratory

A 84-beam array injector is very large (and costly)

Is there a better way for HIF injector system?

Beam Extraction Scaling Law

$$J_{CL} = \chi \frac{V^{\frac{3}{2}}}{d^2}$$
 $I_{CL} = \pi \chi \left(\frac{a}{d}\right)^2 V^{\frac{3}{2}}$

• Space-charge-limited flow in the extraction diode is governed by Child-Langmuir equation.

where $\chi = (4\varepsilon_0/9)(2q/M)^{1/2}$ with *q* and *M* being the charge and mass of the ions respectively, *a* is the aperture radius, *d* the diode length, and *V* is the extraction voltage.

- V is limited by breakdown
 V ~ d for d < 1 cm
 V ~ d^{0.5} for d > 1 cm
 so large ion diode needs high V
 but produces low J.
- Spherical aberration depends on the aspect ratio *a/d* (typically < 0.5) thus I_{max} ~ V^{3/2}
- Conclusion: high current needs large V and d but results in low J, so the brightness is limited.

High Current Density Option

- For effective LEBT, high brightness miniature beamlets (≈5 mA ea) can be accelerated to ≈ 1.2 MeV before they are merged into a single beam (≈ 1 ampere).
- Beamlets can be aimed and steered to rapidly match into an ESQ channel.
- Beamlet merging will introduce emittance growth, thus the miniature beamlets must be very bright.

The mini-beamlet approach can drastically reduce the size of a multiple beam injector

- The merging beamlet approach requires a high current density ion source. It can tolerate a higher intrinsic ion temperature, so there are more ion source options.
- Merging beamlets produces emittance growth.

The purpose of the Merging Beamlets Experiment was to develop a prototype injector for IRE

- With the recent improvements in alumino-silicate sources, the single aperture source is probably still the optimum choice for single beam experiments
- Merging beamlets type injector is preferred for drivers with multiple beams
- We want to demonstrate that we have solutions to all the critical issues—high J, high gradient, tolerance etc.
- Study the physics of emittance growth from merging beamlets
- Benchmarking the simulation code will enable us to control beam profiles and halos.

The Merging Beamlets Experimental Plan

- Built an RF-driven argon plasma source that can deliver the current density over a large extraction area
- Built a high voltage test stand—a 500 kV column is just about the maximum voltage that can run in air. Higher voltage will require a compressed-air enclosure and cost more.
- Develop and test high gradient insulators and vacuum gaps: aim at 35 kV/cm and 100 kV/cm respectively.
- Do the experiment in three phases—(1) test the source, extraction and Einzel lens on STS-100, (2) experiment with full gradient beamlets up to the first 400 kV of a full size injector, (3) experiment with a ¼ scaled voltage (but full size) merging beamlets at 400 kV.

Testing a multi-beamlet Ar⁺ RF-plasma source

 $\begin{array}{l} \text{500} \mu\text{s}, \, \text{20kW}, \, \text{\sim} \, \text{10 MHz} \\ \text{Compact RF oscillator} \end{array}$

The Heavy Ion Fusion Virtual National Laboratory

Schematic Diagram of the RF-Source Experiment on STS-100

- Faraday cup to measure total beam current
- 2nd Faraday cup to measure Time of Flight (TOF)
- Doube-slit scanner to measure projectional emittance
- Dipole plates to measure energy dispersion

Argon plasma source has produced beamlets near the required current density

- Current peaks when a beam fills the exit aperture.
- Optimum optics at perveance = 5.3 mA / 80 kV^(3/2)

Obtained 3.9 mA from d=0.25 cm aperture ⇒ 80 mA/cm². (compare to 8.3 mA/cm² for hot-plate source)

Charge states measurements

020924Zi.xls

Emittance measurements

- Measured emittance showed $T_{eff} \approx 2 \text{ eV}$, which is adequate for use in merging beamlets.
- Possible emittance reduction by improving beam optics.

Energy dispersion can result from charge exchange loss during acceleration

- Use an energy analyser to measure the beam energy spread
- Compare results as a function of gas pressure in the source chamber

4ms on gas valve ~ 2 mTorr chamber pressure

Charge Exchange Loss

Recent Results from Argon RF Plasma Source

Single Beamlet:

Parameters	<u>Results</u>	<u>Status</u>
Current density	100 mA/cm² (5 mA)	met goal
Emittance	T _{eff} < 2 eV	met goal
Charge states	> 90% in Ar⁺	met goal
Energy spread	< a few % beam suffers CX	met goal?

RF Source:

Multiple Beamlet:

Image on Kapton:

Results of the Einzel lens multi-beamlet experiment

Einzel lens using flat electrodes HGI held 35kV/cm

Grid parameters: 61 beamlets, Pierce aperture diam. 2.21 mm lens aperture diam. 4.0 mm Spacing is 6.0 mm Image on Kapton film

· · · · · · ·

Kapton data:

Measured radius = 2.25 mm at 10 mm downstream.

Actual Einzel lens voltage: 10 < V < 20 due to <u>lens drawing</u> <u>current from the</u> <u>power supply</u>

See 031117 presentation

.....

Beamlet profile measured from a slit scanner

PBGUNs simulation was consistent with data

The Merging Beamlet Experiment has a conservative extractor design

Designed operating point for the merging beamlet experiment is $\sim 58 \text{ mA}$

The Full-Gradient test will be installed this month

To demonstrate a full current density array, the vacuum gap voltage gradient (> 100 kV/cm) and check for interaction between beamlets.

We will use Faraday cup, and take images of the beamlets

The Final Phase will merge beamlets into an ESQ Channel

