Multi-Beamlet Injector Background and STS500 Design

D. P. Grote

Merging Beamlet Physics Design Review May 10, 2004

Outline

- Basic physics of merging
- Characterization of merging injector
- STS500 experiment design

Emittance growth from merging

Oscar Anderson had looked at emittance growth from various beam configurations, including multiple beamlets.

From conservation of energy, can estimate emittance growth

- Calculate 'excess' energy in self field compared to uniform beam
- Assume all excess goes into emittance and small increase in size
- Define normalized free space-charge energy

$$U_n = \frac{U_f - U_0}{U_0}$$

• Here U_f is the field energy of the beamlet arrangement, and U_0 is the field energy of a uniform beam with the same radius

Estimates of emittance growth

For matched beam in uniform focusing, beamlets in concentric circles

• With occupancy factor

 $\eta = 2a / \delta$, a = Beamlet radius, $\delta =$ center - to - center distance

- Perveance $Q = 2\lambda q / 4\pi \varepsilon_0 m v_z^2$
- The normalized free space-charge energy is approximately

$$U_n \approx \frac{4}{N} \left(\frac{3}{4} - \ln 3 - \ln \eta + \frac{3}{8} \eta^2 \right)$$

• Giving a change in emittance

$$\frac{\varepsilon_{\text{final}}^{2}}{\varepsilon_{\text{initial}}^{2}} = \frac{\langle X^{2} \rangle + \langle Y^{2} \rangle}{2 \langle X^{2} \rangle} \left(1 + \frac{QU_{n}}{8 \langle X'^{2} \rangle}\right)$$

Comparison to particle simulation

Injector layout

- Pre-accelerator column -- Einzel lenses
- Merging region

Trade offs

- Merging energy
 - Higher is better for merged emittance
 - But Einzel lenses become weaker, and more plates
- Number of beamlets
 - The more the better for emittance
 - But becomes larger transversely
- Aperture plate shape
 - Aspherical allows compact beamlet arrangement and x and y emittance to be the same
 - Spherical plates easier to build

Trade offs (continued)

- Einzel lens plate transparency
 - The higher the transparency (more closely packed beamlets) the lower the merged emittance
 - Space needed for
 - Rigidity of the plate (~ 2 mm material minimum)
 - Clearance for beamlets (100 μ errors \rightarrow 0.5 mm offset)
 - Shielding between beamlets
 - Enough area to transport current
 - $J_{\text{max}} \sim 100 \text{ mA/cm}^2$
 - ~1 mm source radius gives 3.1 mA

Optimized layout

Beamlets converge

STS500 Physics Review DPG 9

Slice simulations

2-D grid 512x512 -> 20 grid cells across beamlet diameter 20,000 particles per beamlet, 91 beamlets

Elliptical arrangement of beamlets

Optimized designs

For 0.5 Amps, 1.6 MeV, K^+

- Aspherical plates, nearly round arrangement
 - Lower emittance minimum at higher energy
 - But with weaker focusing can't get as close to minimum

Beamlet	# Beamlets	Merge	Beamlet	Beamlet	Normalized
Spacing		Energy	Size	Convergence	Emittance
(mm)		(MeV)	(mm)	(mrad)	$(\pi$ -mm-mrad)
6	121	1.2	1.21	-1.42	0.80
		0.8	1.34	-2.34	0.86
	199	1.2	1.21	-1.86	0.70
		0.8	1.15	-2.74	0.76
5	5 121		1.22	-1.35	0.60
		0.8	1.15	-2.50	0.62
	199	1.2	1.21	-1.87	0.51
		0.8	1.17	-2.74	0.55

Source temperature

Merged emittance weakly dependent on source temperature •Solid surface source T < 1 eV •Plasma source T ~ 2 eV

91 beamlets Merging at 1.2 MeV

Robustness to errors

- Merged emittance insensitive to errors in beamlets
- Ensemble of 80 simulations with differing random seeds and varying error amplitudes

Trade offs for STS500

- Voltage is ¹/₄ scale, size is full scale
- Merge at 160 kV (640 kV at full scale)
 - Requires only 12 plates (cheaper to build)
- Number of beamlets
 - ~100 (actual number determined by arrangement)
- Choose spherical (cheaper to build)
- ≻ Though design not optimal (for emittance)...
- Will still test all relevant physics of the merging process
- Provides validation of the simulation

Basic design procedure

- Design merging region
 - Choose merging energy, spherical
 - Gives beamlet arrangement
- Characterize merged emittance
 - 2-d transverse slice simulations
- Optimize pre-accelerator column
 - To produce beamlet parameters minimizing emittance

Merging region design

- Find envelope solution, going upstream.
 - Initial conditions from matched solution.
 - Final conditions meets two conditions:
 - Contain ~120 beamlets
 - Spherical convergence
- Include shield Ez varies approximately quadratically
 - $Ez \sim E_0 + E_1 z^2$
 - E_0 obtained from Laplace solve with estimate of merge length, ~ 70 cm.
 - E_1 then fixed by integration to give correct voltage change

Quadratic Ez is a good approximation

- Black is particle simulation, including shield
- Red envelope with quadratic Ez

Merge region continued

• Compare particle simulation and envelope

Resulting elliptical arrangement

- Pattern on last plate of accelerating column
- Hexagonal dense pack
- 6 mm between beamlet centers

Emittance from slice simulation

- Varied beamlet convergence and radius at list plate
- Quadratic variation in Ez

Accelerating column

• Envelope somewhat optimized to reduce emittance.

$$-a = 1.152$$

$$-\varepsilon_n = 1.25$$

- Plates evenly spaced
- Voltages at tie off points of insulator

3-D simulation

Possible experiments

- Main design compare to simulation
 - Total current, beamlet current
 - Emittance after quads
 - Images of merging process
- Mask off holes different hole patterns
- Change Einzel lens voltages
 - Examine beam emittance with changing beamlets

Changing Einzel lens voltage

- Effect of emittance should be measurable
- Table shows estimated emittances

Plate voltages (kV)				Beamlet	Beamlet	Estimated
Plate number				size	divergence	emittance
8	9	10	11	(mm)	(mrad)	$(\pi$ -mm-mrad)
272	304	240	240	1.02	-2.63	1.19
272	304	272	240	1.08	-0.63	1.30
272	288	256	240	1.13	0.99	1.47
272	256	240	240	1.96	1.80	1.57

