Progress in e-cloud studies in both solenoids and quads

<u>Outline</u>

- 1. Accomplishments
- 2. Why we made progress
- 3. Opportunities on HCX, STX, NDCX,...
- 4. Planning for future

Art Molvik

for the Heavy Ion Fusion Science Virtual National Laboratory **Program Advisory Committee Review August 9-10, 2006**

Sources of electron clouds

Primary:

- Ionization of
 - background gas
 - desorbed gas
- ion induced emission from
 - expelled ions hitting vacuum wall
 - beam halo scraping
- photo-emission from synchrotron radiation (HEP)

Secondary:

secondary emission from electron-wall collisions

HIFS-VNL has unique tools to study ECE

WARP/POSINST code goes beyond previous state-of-the-art

Parallel 3-D PIC-AMR code with accelerator lattice follows beam <u>self-consistently</u> with gas/electrons generation and evolution

HCX experiment addresses ECE fundamentals relevant to HEP (as well as WDM and HIF)

trapping potential ~2kV with highly instrumented section dedicated to ecloud studies

Combination of models and experiment unique in the world

- unmatched <u>benchmarking</u> capability essential to our credibility 'Benchmarking' can include: a. Code debug
 - b. validate against analytic theory
 - c. Comparison against codes
 - d. Verification against experiments
- □ enabled us to attract work on LHC, FNAL-Booster, and ILC problems

The Heavy Ion Fusion Science Virtual National Laboratory

Molvik - HIFS-VNL-PAC - 2006

HCX is now dedicated to gas/electron effects studies

Molvik – HIFS-VNL-PAC – 2006

~6 MHz signal is observed in simulation & experiment

Array of BPMs in Quad 4 verified simulation results

Molvik – HIFS-VNL-PAC – 2006

First time-dependent measurement of absolute electron cloud density & major discrepancy with simulation

Retarding field analyzer (RFA) measures potential on axis = ionrepeller potential

- Clearing electrodes provide independent measurement of e⁻ density, confirms RFA
- Both RFA and clearing electrodes measure unattenuated transport of electrons through 3 quads whereas WARP finds x0.5 attenuation at each gap.
- We are adding diagnostics and a controllable source of electrons (e-gun) to study electron transport and compare with WARP to resolve discrepancy.

Absolute electron fraction can be inferred from RFA and clearing electrodes Michel Kireeff Covo, PRL 97, 54801 (2006)

Beam neutralization	B, C, S on	B, C off S on	B, C, S off Sim~89%
Clear ElectrodeA	~ 7%	~ 25%	~ 89%
RFA	(~ 7%)	~ 27%	~ 79%

Electron effects on beam more accurately simulated

Improved model for beam energy and angle of incidence scaling of ion-induced electron yield*

Intense beam excitation of gas – enabled measuring velocity distribution of desorbed gas

Observation: desorbed gas in beam emits light

View expanding gas cloud from side $- f(v_0)$ normal to hole plate [with gated camera or streak camera]

Molvik – HIFS-VNL-PAC – 2006

Optical gas measurement has other applications

Velocity distribution of desorbed gas measured

[Further details from Frank Bieniosek]

Time

Future plans:

- Absolute calibration to obtain desorption coef. by injecting beam through gas of known pressure
- Then can measure desorption from Non-evaporable Getter (NEG), ...
 [Collaborate with GSI vacuum group]

Electron accumulation and effects on beam transport in solenoidal field – commissioning

WARP/POSINST applied outside HIF program

In collaboration with CBP (M. Furman) LARP funding (started FY06, 0.2 FTE): simulation of e-cloud in LHC

FNAL funding: study of e-cloud in MI upgrade (hiring post-doc) ILC (with C. Celata, M. Venturini): start work this summer

The Heavy Ion Fusion Science Virtual National Laboratory

Molvik - HIFS-VNL-PAC - 2006

13

CERN staff interested in our capabilities

Simulations show tenuous electron clouds (below instability threshold) increase emittance of LHC beam.

- Request from Frank Zimmermann and Elena Benedetto to compute initial electron distribution for her simulation starting point, using our self-consistent 3-D code WARP.
- Repeat simulation with WARP, when it can do many turns in LHC.
- **Jean-Luc Vay invited to speak at CERN Oct. 6, 2006.**

Above results may increase interest of CERN management

VNL has capabilities for High-Brightness Studies

Issues	НСХ	NDCX	
		STX (Solenoid)	NDCX (quads)
Beam potential	2 kV	0.4 kV	0.4 kV
Beam transport	Quads	Solenoids	Quads
Duration (µs)	5	≤~20	≤~20
Access	Between quads and ends	End	End

Exploit other capabilities such as Paul Trap at PPPL or UMER at Univ. Maryland for testing some slowly-growing phenomena, to supplement our short accelerators.

Expectations for electrons in quadrupoles and solenoids

Transport	Axial flow	Radial flow
Quadrupoles	Electrons drift slowly	Electron flow along B is slightly impeded by magnetic gradient
Solenoids (↑ ↑)	Electrons flow freely over entire length	Electron flow suppressed
Solenoids (↑↓)	Electrons flow freely for 1-magnet length	Electron flow suppressed except between magnets

Not yet clear which is superior for WDM/HIF needs, motivates present STX-ECE experiments

Our present plan for future

WDM/HIFS

- Continue coordinated experiments and simulation of electrons and gas effects on HCX magnetic quads in search of complete quantitative agreement – publish areas of agreement and work on areas of disagreement
- **Beginning solenoid studies, for near-term support of WDM**
- **Study mitigation techniques**

HEP

- implement hybrid (3-D beam though 2-D e- slabs) "quasi-static" mode to study slow e-cloud driven emittance growth, which is a growing concern for LHC
- **I** study e-cloud in ILC, FERMILAB, possibly RHIC
- **develop experiments/diagnostics on HCX/NDCX relevant to HEP**
- Collaborate with GSI to study beam-induced desorption from Non-Evaporable Getters (NEG).

Reconvene High-Brightness Planning Group

Goal: What do we need to know to initiate larger HIF facility ~2010 [After NIF ignition and ITER spending-peak]

Or – Learn enough to add validated effects into IBEAM systems code

& - Apply to near term WDM accelerators

Issues:

- E-cloud, gas-cloud (quads vs sols, transport, conditions to assure non-degraded operation)
- Halo
- Beam transport limits
- **D** Emittance growth
- □ Mitigation ...

Strategy:

- Benchmark codes over wide parameter range for verified predictive capability
- Verify codes with HCX, NDCX, STX, PTSX, UMER... (The Paul Trap Simulation Experiment and U-Maryland Electron Ring can test effects that occur over 100's of lattice periods).
- Use lists of issues from previous workshops

The Heavy Ion Fusion Science Virtual National Laboratory

External recognition of High Brightness program

Significant publications:

- PRL Measure electron cloud density
- **PRSTAB Measure & model e- emission by ion impact**
- □ POP e- mover successes

Recognition with invited papers

- □ PAC05 2
- □ HB2006 2
- □ HIF06 3
- **CAARI-06** 1
- □ ICAP06 1
- **DPP05/06** 1/1
- □ AVS06 1

Invitations from CERN, FNAL for talks and assistance

Slides

