

Shaping the Future of Electron Microscopy: The TEAM Microscope

C. Kisielowski National Center for Electron Microscopy, LBNL, Berkeley CA 94720, USA

TEAM is a collaborative Project

Transmission Electron Aberration-corrected Microscope

Lawrence Berkeley National Laboratory Argonne National Laboratory Brookhaven National Laboratory Frederick-Seitz Materials Research Lab, UIUC Oak Ridge National Laboratory

Industry: FEI Company, CEOS NCEM: A.Schmid, A. Minor, U. Dahmen (Head), P. Denes (Manager)

Supported by the US Department of Energy

Selected Microscopes @ NCEM

Atomic Resolution Microscope (ARM) Accessible to users since 1984 Point resolution: 0.16 nm, 400-800 kV

One Angstrom Microscope (OAM) Accessible to users since 1999 Spatial resolution: 0.08 nm, 300 kV

Highest TEM resolution today

STEM / HRTEM : Tecnai G² Accessible since 2003, 200 kV Spatial resolution: 1.2 Ångstrom Energy resolution: 150 meV

A STEM / TEM Study: First full analysis of a single dislocation, GaAs:Be

NCEM —

Electron Exit Wave Reconstruction Position determination

STEM (SuperSTEM, UK) Spectroscopy

•Column positions can be determined to pm precision •Compositional changes can be revealed on single atom columns

Combining Experiments & Simulations & Theory

Ga terminated 30^o partial dislocation in GaAs: Be

NCEM —

Theory and experiment can be merged on the same scale (~ 4000 atoms)
Microscopy can guide theory

X.Xu, S.P. Beckmann, P. Specht, E.R. Weber, D.C. Chrzan, R.P. Erni, I. Aslan, N. Brwoning, A. Bleloch, C. Kisielowski, **PRL 95, 2005, 145501**

Why Engage in New Developments

OAM reconstructed phase image (2005):

ARM lattice image (1988):

Projection of 3D object in 2D image
Intensities are not interpreted

 $N_2^{|}N_1^{||}Si$

The Feynman Challenge

"It would be very easy to make an analysis of any complicated chemical substance; all one would have to do would be to look at it and see where the atoms are. The only trouble is that the electron microscope is one hundred times too poor ... I put this out as a challenge: Is there no way to make the electron microscope more powerful?"

Richard P. Feynman, 1959,"There's Plenty of Room at the Bottom"

TEAM aims at meeting the Feynman challenge

There are numerous other advantages that are not mentioned

The DoE is Committed to Support TEAM

TEAM is a DoE Project

High visibility, near term goal

Platform: TITAN Access: 2007 - 2009 Spatial resolution: 0.5 Ångstrom STEM/TEM Energy resolution <100 meV 80 - 300 kV

Aberration corrected

Well Known Aberrations

NCEM —

Spherical aberration

Blue image Red image Yellow image Red and yellow images b

...and how they are corrected

Chromatic aberration

A Famous Example

June 2006

Coherence

A' =Point in image

space

B = Point detector

• Principle of reciprocity:

Electron trajectories and elastic scattering processes have time reversal symmetry. J.M Cowley (APL 15, 1969,58)

TEM and STEM can perform identical tasks
 Differences relate to S/N ratios & experimental set up
 Differences MATTER!

Corrector

Lens Aberrations STEM: Probe

Cs corrected probe Probe Profile 12.8 0Å 12.8 ⊙ Intensity ○ Real ○ Imag ○ Amp ○ Phase Parameters (Left/Right Arrow keys adjusts) Astigmatism [Å] / Coma Angle [°] Microscope Focus [Å] -0 Mag. w/horiz. O Two fold 0 0 0 Probe Sampling [Å/px] 0.100 O Three fold 0 0 0 # Sampling Points [px] 256 Coma 0 0 Semi-Angle [mrad] 15.0 0 Detector Inner Aperture [mrad] 50.0 0.39 Å Outer Aperture [mrad] 300.0 0.06 Å Create Probe Image

In STEM aberration can only be corrected by hardware

Materials Sciences Division

Principle of HRTEM Image formation

NCEM —

Contrast Transfer Function ARM OAM 0.33 0.2 0.10 0.08 0.14 Scattering Vector [nm]

•We record Intensities: I ~ ΨΨ*
 Loss of phase information
 CTF oscillations mix amplitudes and phases
 CTF oscillations increase image delocalization

 •We gain resolution - at a huge price....

Principle of HRTEM Image formation: delocalization

Filter: No Circles Band LF HF FT "ARM Image, "OAM Image" EWR"

Materials Sciences Division

June 2006

Principle of HRTEM Image formation: delocalization

•We must fill the gaps in Fourier space (Focus series) •We can solve the phase problem simultaneously

W.M.J. Coene, A. Thust, Ultramicroscopy 64 (1996) 1 F.R. Chen, R. Kilaas et al. 2005

On the Importance of Phases Phases carry most of the information in an image

Materials Sciences Division

June 2006

Lens Aberrations TEM: Point spread function

Higher Order Lens Aberrations

NCEM —

$E(\alpha,\overline{\alpha})$	=	Re { $C_1 \alpha \overline{\alpha} + \frac{1}{2} A_1 \overline{\alpha}^2$
	+	$B_2 \alpha^2 \overline{\alpha} + \frac{1}{3} A_2 \overline{\alpha}^3$
	+	$\frac{1}{2}C_3\alpha^2\overline{\alpha}^2 + S_3\alpha^3\overline{\alpha} + \frac{1}{4}A_3\overline{\alpha}^4$
	+	$B_4 \alpha^3 \overline{\alpha}^2 + D_4 \alpha^4 \overline{\alpha} + \frac{1}{5} A_4 \overline{\alpha}^5$
	+	$\frac{1}{3}C_5\alpha^3\overline{\alpha}^3 + S_5\alpha^4\overline{\alpha}^2 + R_5\alpha^5\overline{\alpha} + \frac{1}{6}A_5\overline{\alpha}^6$
	+	$B_6 \alpha^4 \overline{\alpha}^3 + D_6 \alpha^5 \overline{\alpha}^2 + F_6 \alpha^6 \overline{\alpha} + \frac{1}{7} A_6 \overline{\alpha}^7$
	+	$\frac{1}{4}C_7 \alpha^4 \overline{\alpha}^4 + S_7 \alpha^5 \overline{\alpha}^3 + R_7 \alpha^6 \overline{\alpha}^2 + G_7 \alpha^7 \overline{\alpha}^1 + \frac{1}{8}A_7 \overline{\alpha}^8 \}.$

name		symbols								
defocus	C_1									
n-th order spherical aberration			C_3		C_5		<i>C</i> ₇			
n-th order axial coma		B_2		B_4		<i>B</i> ₆				
n-th order star aberration			S_3		S_5		S7			
n-th order three-lobe aberration				D_4		D_6				
n-th order rosette aberration					R_5		<i>R</i> ₇			
n-th order pentacle aberration						F_6				
n-th order chaplet aberration							<i>G</i> 7			
v-fold astigmatism		A_2	A_3	A_4	A_5	A_6	A_7			

M. Haider

- There are axial (listed) and off-axial aberrations
- Often only C_1 (Δf) and C_3 (C_s) are considered

 $\chi(g) = 1/2 \Delta f \lambda g^2 + 1/4 C_s \lambda^3 g^4$

- OÅM: A_1 , A_2 , A_3 , B_2 , (C_1 and C_3 by EWR)
- Higher order aberrations become important if the resolution increases (TEAM-Project --- 0.05 nm)
- It is challenging to correct all aberration by software only

Cs Corrected Microscopy Advantages

- Image delocalization of small particles can wipe out lattice fringes
- Cs correction reduces the effect largely
- It will always be beneficial to do EWR in a Cs corrected microscope Access to waves
- What happens in the presence of noise?

Software correction Experimental limitations

NCEM —

FePt on carbon, Scherzer defocus

 $\Delta f \sim$ Lichte defocus (-260 nm)

• Experiment:

Image delocalization can be a significant limitation for the reconstruction of small particles on a carbon film

Hardware Correction: Wien Filter

Crossed electric + magnetic quadrupoles

Use magnetic and electric fields to deflect electrons in opposite directions.

for
$$v_0 = E/B$$
, $\mathbf{F} = 0$

Electrons with v_0 will not be affected. All other "colors" will be distorted.

 $\mathbf{F} = q\{\mathbf{E} + (\mathbf{v} \times \mathbf{B})\}$

٠

Approach to Aberration Correction

Rose - CEOS

NCEM —

- Superaplanator Cs/Cc corrector 2 Wien filters 3 octopole elements Use of symmetry to cancel
 - aberrations.
- Cc/Cs correctors are tall

0.8 - 1 m

Consequences for Design

Materials Sciences Division

Courtesy FEI Company

From Titan to TEAM

NCEM —

Numbers seem small but it is a long way from 0.8Å to 0.5Å in STEM/TEM

TEAM Gets Us "Sharper" Images

NCEM —

Penisson, Berkeley ARM

Kisielowski, Juelich, 2002

•Hubble telescope before and after correction of spherical aberration (1993)

•Atomic resolution images of dislocation core in Au before and after correction of spherical Aberration

•How much is the improvement?

More Important than Resolution: Sensitivity

•Technological progress with EM has boosted sensitivity

FEG, aberration correction,..

rrrr

•Single atoms of most elements from the Periodic Table can be detected •TEAM Project will provide the "ultimate" resolution / sensitivity

June 2006

Single Atom Sensitivity: Current abilities

OAM: 30 frames/sec

Cs Correction: 1 frame/sec

Intensity reflects atom position

Brighter gun & better cameras allow for better real time experiments with large S/N ratio

Experiments Must be Guided and Verified by Simulations

• Past: Utilization of indirect methods (lack of uniqueness)

.....

Today: Development of direct methods
 Progress with theory has enabled a reliable reconstruction of electron exit waves
 Structure reconstruction from exit ways becomes feasible

Interpretation of Waves Amplitude - phase diagrams (Argand plot)

CCCC

NCEM –

- A wave is entirely characterized by amplitude-phase diagrams
- In high performance microscopes Argand plots can be discrete
- Chemical composition can be revealed with single atom sensitivity
- Argand plots depict the full information there is nothing more

Interpretation of Intensities From exit waves to structure

NCEM —

It is possible to count the number of atoms in columns by interpreting intensities

June 2006

Intensity Interpretation Current abilities; example AI:Cu

Materials Sciences Division

- The shape of nanoparticles can introduce local defocus changes
- Absolute amplitude/phase values noticeably over 2 Å
- Demands on stability are extremely high

Exploiting Sensitivity: Discrete Tomography

WORKSHOP ON

Workshops on DT are held regularly (~ 100 participants)

•Discrete (binary) tomography is a general approach (biology, medicine, solids,...) •It is very suited to be applied to crystalline solids since atoms are discrete objects

Discrete Tomography Constraints

NCEM —

Binary Tomography

K.J. Batenburg / Electronic Notes in Discrete Mathematics 20 (2005) 247-261

Original volume of size $128 \times 128 \times 128$.

Reconstruction from two projections: (1, 0, 0) and (0, 1, 0).

Reconstruction from three projections: (1, 0, 0), (0, 1, 0) and (0, 0, 1).

Reconstruction from four projections: (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 0).

- •Utilizing constraints reduces the number of projections
 - Binary information is a powerful constraint
 - Complex structures can be reconstructed

- •Atomic resolution (S)TEM may give binary information Materials are made from single atoms Constraint: atomicity
- Atomicity is NO limiting constraint for (S)TEM
- •How can the number of atoms in columns be counted? Utilize imaging along zone axis (dynamic scattering)

Discrete Tomography Simulation

NCEM —

										-			
#projections			5				6						
orientations	[001], [110], [110]				[001], [110], [<u>1</u> 10], [011], [111]				[001], [110], [110], [011], [111], [111]				
#count errors	10	20	40	80	10	20	40	80	10	20	40	80	309
% perfect	36	3	0	0	100	97	61	6	100	99	80	39	
avg. #atom errors	1.28	4.51	11.92	27.13	0	0.03	0.57	3.73	0	0.01	0.23	1.18	

309 atoms

Reconstruction agrees with input structure: 3D can be done
Number of projections determines error bars

•Experimentally, availability of sample holders is limiting

A Glimpse into the Future: Tomography with atomic resolution

•FePt icosahedra with core-shell structure (Nanomagnets with a catalytic shell) •Strain relaxation by element redistribution and site-specific atom loss

R. Wang et al. 2005, Nature Mat., 2005, in review

<u>June 2006</u>

