

One-Dimensional Nanostructures as Subwavelength Optical Elements for Photonics Integration

Peidong Yang

Department of Chemistry, University of California, Berkeley

Materials Science Division, Lawrence Berkeley National Laboratory

Pushing the Size Limits of Photonics

• Controlling the flow of light in small volumes – optical memory, logic, switching, etc.

Photonic Crystals (>1 µm)

S.Y. Lin et.al. Science 282, 274 (1998).

College of Chemistry

California, Berk

A. Birner et. al. Adv. Mat. 13, 377 (2001).

V.L. Almeida *et. al. Nature* **431**, 1081 (2004). R. Quidant *et. al. Phys. Rev. B* **69**, 81402R (2004). Plasmonics (< 100 nm)

J.C. Krenn *et. al. Phil. Trans. R. Soc. Lond.* A **362**, 739 (2004) Barnes *et. al. Nature* **424**, 824 (2003).

On-Chip Photonic Integration

K. Djordjev *et. al. IEEE Phot. Technol. Lett.*, **14**, 828 (2002). K.J. Vahala *Nature (Insight Review)*, **424**, 839 (2003).

SOI fabrication approach

M. Paniccia et. al. Topics Appl. Phys., 94, 51 (2004).

Single Crystalline, Single Domain, Facetting

H. Yan et al. *Adv. Func. Mater.* 12, 323,2002 *T. Kuykendall, P. Pauzauskie, et al. Nano. Lett.* 3, 1063, 2003.

Vapor-Liquid-Solid Epitaxy

Si Nanowire Arrays

GaN Nanowire Arrays

ZnO Nanowire Arrays

P. Yang, Adv. Mater. 15, 353, 2003. Y. Wu et al. Chemistry, Euro. J. 8, 1260, 2002 M. Law et al. Annu. Rev. Mater. Sci. . 34, 83, 2004

Growth Direction Control

<110>Alignment: GaN

<001>Alignment: GaN

COLLEGE OF CHEMISTRY T. Kuykendall, P. Pauzauskie et al. Nature Mater. 3, 528,2004 University of California, Berkeley

Interface within Nanowires

Y. Wu et al.Nanolett, 2, 83, 2002. J. Goldberger et al. Nature, 422, 599, 2003 . H. Choi et al. J. Phys. Chem. B 107, 8721, 2003.

Semiconductor Nanowire Microcavities

Lasing Single ZnO Nanowire

BERKELEY L a а 100 nm Nanowire Emission (AU) Sector Sector $\Delta \lambda = \frac{\lambda^2}{2L(n-\lambda \frac{dn}{d\lambda})}$ b С Nature Materials 1, 101,2002 COLLEGE OF CHEMISTRY 400 360 380 390 350 370 University of California, Berkeley Wavelength (nm)

GaN Nanowire Nanolaser

Complex far-field emission pattern

 Evidence for coherent laser pulses (GaN 25.3 µJ cm 2500 and ZnO) -13.9 μJ cm⁻³ 10.5 µJ cm⁻² 2000 7.2 µJ cm⁻² 3.9 µJ cm⁻² Intensity (a.u.) 000 1200 w soo o Wavelength (nm) 18 500 16 350 375 400 14 Wavelength (nm) 12 а Intensity (a.u.) 10 8 6 4 2 0 е d 20 25 30 35 15 0 5 10 Pump fluence (μ J cm⁻²) COLLEGE OF CHEMISTRY University of California, Berkele

Nanowire microcavity/laser

- Highly Facetting/Single Crystalline
- > Lower limit $\lambda/2n$: r > 60 nm
- ➢ G_{th}: 400 − 3000 cm⁻¹
- > High-Q: **500-1500**
- Lower lasing threshold: ~ 70 nJ/cm² (sub-ps pulses)

J. Phys. Chem. B, 107, 8816, 2003

C. Ning et al. APL, 83, 1237, 2003

COLLEGE OF CHEMISTRY University of California, Berkeley

GaN Nanowire Transistor: n-type

p-SOI/ n-GaN Nanowire Matrix LED

H. Yan, J. Goldberger, Unpublished Results

COLLEGE OF CHEMISTRY University of California, Berkeley

p-SOI/ n-GaN Nanowire Matrix LED

University of California, Berkeley

Addressable UV LED Array

Subwavelength oxide Nanoribbon Waveguides and Optical Elements

Dimensions: Length > 1.5 mm Width 200 – 500 nm Thickness 100 – 300 nm

Aspect ratios > 1000 COLLEGE OF CHEMISTRY University of California. Berkeley

Non-Resonant Waveguiding

M. Law and D.J. Sirbuly *et al.* Science **305**, 1269 (2004).

Cavity Manipulation

COLLEGE OF CHEMISTRY

University of California, Berkele

Shape Manipulation

Subwavelength Optical Junctions and Networks

$1 \rightarrow 2 \& 3 \qquad 2 \rightarrow 1 \& 4$

~ 50% of light energy couples through junction – evanescent waves

Cross-Bar Assembly – Coupling Scattered Light

Intensity Variations: $1 >> 6 > 4 \approx 7 > 3 > 5 > 2$

Size Effect on Waveguiding

Filtering White Light (Multi-Channel)

single mode cut-off (cylindrical step-index fiber)	Diameter (nm)	Area (um ²)	Exp. Area (um ²)
543 nm	274 nm	0.05896	0.04900
502 nm	253 nm	0.05027	0.04550
	241 nm	0.045617	0.02835
University of California, Berkeley			

Waveguiding Nanowire Laser Pulses - GaN

Waveguiding in Liquids – High Index Nanowires BERKELEY LAB - Local bio-medicinal probe/spectroscopy (in vivo) Micro/nanofluidics, PDT, chemical photo-release, -Water integrated bio-chip, etc. *n* = 1.33 Glycol *n* = 1.45 **-** 100 μm 50 µm COLLEGE OF CHEMISTRY University of California, Berke

rrrr

Nanowire Evanescent Subwavelength Spectrometry

Local Fluorescence Scheme

• Inject resonant light to induce local fluorescence at the end or along the length of the ribbon.

BERKELEY

• Probe direct or back-guided fluorescence.

Nanowire Evanescent Subwavelength Spectrometry

Local Absorption Scheme

 Inject broad light source and probe waveguided photons.

rrrr

BERKELEY

Utilize evanescent field to detect molecules.

- sub-picoliter probe volumes
- path lengths of 1-50 microns
- detection of 10³ molecules is achievable

Semiconductor Nanowires as Subwavelength Photonics Integration

On-Chip Heterogeneous Photonic Integration Pushing the Size Limits of Photonics

✓ Precise 1-dimensional nanostructure synthesis and assembly
→ Self-Organized Optical Cavity

- ✓ Nanowire based optical cavity, UV coherent light sources
- ✓ From Fabry-Perot cavity to ring laser
- ✓ From optical pumping to light emitting diodes, and laser diodes
- ✓ Subwavelength optical waveguides

COLLEGE OF CHEMISTRY

- ✓ Optical waveguiding in solution, interface with microfluidics
- ✓ Subwavelength optical spectroscopy (absorption, PL...)

Acknowledgements

Dr. Michael Huang Dr. Yiying Wu

Dr. Heonjin Choi Haoquan Yan Dr. Justin Johnson (Sa

Dr. Don Sirbuly Peter Pauzauskie Matt Law Josh Goldberger Tev Kuykendall

Dr. Alex Maslov (NAS

