

New Semiconductors for High-Efficiency Solar Cells

Wladek Walukiewicz

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Collaborators

- K. M. Yu, J. W. Ager III, J. Wu, W. Shan, O. Dubon, J. Beeman, E. Haller, Z Liliental-Weber
- K. Alberi, R. Jones, X. Li, N. Miller, D. Yamaguchi
- Hai Lu and William J. Schaff, Cornell University; P. Becla, MIT; A. Ramdas, Purdue University, J. F. Geisz, NREL

- Support:
 - ✤ DOE Contract No. DE-AC03-76SF00098;
 - **♦** US NSF DMR-0109844;
 - *♦ ONR Contract No. N000149910936*
 - ✤ NRO

Outline

- The big picture
- Solar cell fundamentals
- Multijunction cells: group III-nitrides
- Multiband cells: highly mismatched alloys
- Solar splitting of water

The first Si cell

D.M. Chapin (center), C.S. Fuller (right) and G.L. Pearson (left), "A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power", J. Appl. Phys. **25** 676 (1954).

The New York Times: April 26, 1954 "Vast Power is Tapped by Battery Using Sand Ingredient"

...may mark the beginning of a new era, leading eventually to the realization of one of mankind's more cherished dream —the harnessing of the almost limitless energy of the sun for the uses of civilisation".

A. Luque, GRC, NH

Mean Global Energy Consumption, 1998

N. Lewis, DOE workshop

Solar Energy Potential

- Theoretical: 1.2x10⁵ TW solar energy potential (1.76 x10⁵ TW striking Earth; 0.30 Global mean)
 Energy in 1 hr of sunlight ↔ 14 TW for a year
- Practical: ≈ 600 TW solar energy potential (50 TW - 1500 TW depending on land fraction etc.; WEA
 2000)

Onshore electricity generation potential of ≈ 60 TW (10% conversion efficiency):

• *Photosynthesis*: 90 TW

Solar Land Area Requirements

Solar Land Area Requirements

6 Boxes at 3.3 TW Each

World PV Cell/Module Production (MW)

800			744.1	
700				
600		561.8		
500	Rest of world			
500	Europe			
400	□ Japan 390.5			
	U.S.			
300	287.7			
200				
	125.8			
100				
0				
0	1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001	2002	2003	
I	Source: PV News, March 2004			
	2004: 1200 MW			

Today: Production Cost of Electricity (in the U.S. in 2002)

Cost, ¢/kW-hr

Energy Pay-back Time for PV Cells

THE SOLAR CHALLENGE

• With a projected global population of 12 billion by 2050 coupled with moderate economic growth, the total global energy consumption is estimated to be ~28 TW. Current global use is ~13 TW.

• To cap CO_2 at 550 ppm (twice the preindustrial level), most of this additional energy needs to come from carbon-free sources.

• Solar energy is the largest non-carbonbased energy source (100,000 TW).

• However, it has to be converted at reasonably low cost.

Best Research-Cell Efficiencies

Best Research-Cell Efficiencies

Fundamentals of Photovoltaics

- 1. Thermalization loss
- 2. Junction loss
- 3. Contact loss
- 4. Recombination loss

- Dark and light I-V curves
- $\mathbf{V}_{\mathsf{open-circuit}}$
- I_{short-circuit}
- Maximum power P_m
- Fill factor (squareness)
 - FF=P_m/(V_{open-circuit}×I_{short-circuit})

Multijuction solar cells

Larger open circuit voltage

- A stack of single gap solar cells.
- Each of the cells uses different part of solar spectrum.
- The open circuit voltage is the sum of the V_{OC}'s of individual cells.
 - Requires current matching.

State-of-the-art 3-Junction Solar Cells

Yamaguchi et. al., 2003 Space Power Workshop

Group III-Nitrides before 2002

Fundamental Bandgap of Wurtzite InN

- MBE-grown high-quality InN
- All characteristic band gap features lie near 0.7 eV
- No energy gap is observed around 2 eV

In_{1-x}Ga_xN Alloys

- Small bowing parameter in $In_{1-x}Ga_xN$: b = 1.43 eV
- The bandgap of this ternary system ranges from the infrared to the ultraviolet region!

Full solar spectrum nitrides

The direct energy gap of In_{1-x}Ga_xN covers most of the solar spectrum

Space Applications: Irradiation Effects

High Energy Particle Irradiation

Kirtland AFB Dynamitron

1 MeV electrons up to 1×10^{17} cm⁻²

LBNL van de Graaf accelerator

2 MeV protons up to $2x10^{15}$ cm⁻² 2 MeV He⁺ up to $2x10^{15}$ cm⁻²

LBNL ion implanter

 200 keV Ne^+

NRL model used to put electron, proton, and alpha irradiation on same scale Non-ionizing energy loss (NIEL) and displacement damage dose (Dd)

Effect of Irradiation on Photoluminescence Intensity

Surface Electron Accumulation

- Surface/interface native defects (such as dangling bonds) have similar energy to radiationinduced defects
- High concentration of defects near surface leads to Fermi level pinning
- Surface accumulation of electrons due to pinning, N_s =3.5x10¹³ cm⁻²

P-type doping of InN

P-type InN

Hall effect measures the inversion layer only

No PL because of charge separation

N-type InN

Both surface accumulation layer and bulk contribute to the conductivity. The surface contribution is insignifcant in samples thicker than 0.1 μm

CV: Mg-doped InN

can access p-type material under inversion layer

Slope change in plot consistent with surface inversion

> Observed in all Mgdoped InN samples observed to date

The evidence for ptype InN is further supported by measurements of Hall effect and PL in irradiated samples

R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager III, E. E. Haller, H. Lu, and W.J. Schaff, "Evidence for p-type doping of InN," Phys. Rev. Lett., in press.

InN and In-rich InGaN – issues and problems

- Origin of the large energy gap
- Extreme propensity for n-type doping
- P-type doping
- Properties of surfaces and interfaces

Multi-band Solar Cells (MBSC)

Intermediate band solar cells

- Requires a partially occupied intermediate band.
- The intermediate band utilizes low energy photons serving as a "stepping stone".
- Increases the current without decreasing the open circuit voltage.

L. Cuadra, et. al., Thin Solid Films, 451-452, 593 (2004)

Intermediate Band Cell

Intermediate Band Cell

Numerical Calculation of the Thermodynamic Limit of the Efficiency of MBSC

Maximum efficiency is 72% for 4-band cell.

FIG. 2. Efficiency limit for a solar cell with an intermediate band and for a two-terminal ideal tandem cell, in both cases vs the lowest band gap ϵ_I , and for a cell with a single band gap. The corresponding values of the highest band gap in cells with intermediate band (E_G) and in tandem cells (E_C) , for maximum efficiency, are also presented.

Well matched semiconductor alloys

- Well explained by the virtual crystal approximation
- Nearly linear composition dependence of all critical point energies of the electronic band structure
- Small bowing of the fundamental band gap
- Widely used to tune bandgaps

 lasers, LEDs, etc.
- Relatively easy to synthesize in the whole composition range

Highly Mismatched Alloys (HMAs)

Electronegativities, X and atomic radii, R

IV	V	VI
С	N	Ο
2.6	X=3.0	X=3.4
	R=0.075	R=0.073
	nm	nm
Si	Р	S
1.9	X=2.2	X=2.6
	R=0.12 nm	R=0.11 nm
Ge	As	Se
2.0	X=2.2	X=2.6
	R=0.13 nm	R=0.12 nm
Sn	Sb	Те
2.0	2.1	2.1

- A highly mismatched alloy (HMA) is formed when anions are partially replaced with isovalent elements with distinctly different electronegativites and/or atomic radius
 III-N_x-V_{1-x} II-O_x-VI_{1-x}
- Difficult to synthesize, large miscibility gaps

Energy gap vs. composition

Huge deviation from VCA cannot be explained by constant bowing parameters

Dilute nitride alloys: GaAs_{1-x}N_x

 N level splits conduction band

What happens if the local level is below the conduction band edge?

- Oxygen level in ZnTe is 0.24 eV <u>below</u> the conduction band (CB) edge
 - Can be used to form an intermediate band
- Synthesis challenges
 - Very low solid solubility limits of O in II-VI compounds
 - Nonequilibrium synthesis required
- Very large mismatch!

- multi-energy implantation results in uniform, amorphized thin layer
- epitaxial regrowth from undamaged substrate A
- melt duration & depth increase with laser fluence
- Additional thermal annealing may be needed to remove point/line defects

Evidence of Subbands Formation in ZnMnOTe Alloys

- Two sub conduction bands formed in ZnMnTe after oxygen implantation and PLM treatment.
- Extended nature and large density of states of both subbands as a result of BAC.

Photovoltaic Action

Solar to Hydrogen

ENERGY

VIEWPOINT

A Realizable Renewable Energy Future

John A. Turner

The ability of renewable resources to provide all of society's energy needs is shown by using the United States as an example. Various renewable systems are presented, and the issues of energy payback, carbon dioxide abatement, and energy storage are addressed. Pathways for renewable hydrogen generation are shown, and the implementation of hydrogen technologies into the energy infrastructure is presented. The question is asked, Should money and energy be spent on carbon dioxide sequestration, or should renewable resources be implemented instead.

Sustainable Paths to Hydrogen

J. A. Turner, Science 285, 687 (1999)

Photoelectrochemical H₂ generation

- 1. Absorption of light near the surface of the semiconductor creates electron-hole pairs.
- Holes (minority carriers) drift to the surface of the semiconductor (the photo anode) where they react with water to produce oxygen: 2h⁺ + H₂O -> 1/2 O₂ (g) + 2H⁺
- Electrons (majority carriers) are conducted to a metal electrode (typically Pt) where they combine with H⁺ ions in the electrolyte solution to make H₂ :

 $2e^{-} + 2H^{+} \rightarrow H_{2}(g)$

4. Transport of H⁺ from the anode to the cathode through the electrolyte completes the electrochemical circuit.

The overall reaction :

 $2h_{V} + H_{2}O \rightarrow H_{2}(g) + \frac{1}{2}O_{2}(g)$

Why is it hard to do?

- Oxides
 - Stable but efficiency is low (large gap)
- III-Vs
 - Efficiency is good but surfaces corrode
- Approaches
 - Dye sensitization (lifetime issues)
 - Surface catalysis
- No practical PEC H₂ production demonstrated
 - Efficiency <u>and</u> lifetime

Engineering of the Band Offsets for Optimal PECs

- ➢ In both GaN_{1-x}As_x and GaN_{1-x}Sb_x the valence band edge moves upward providing better match to O₂/H₂O potential
- CBM remains nearly unchanged as a function of x

- Electronic structure of InN and In-rich group III-nitride alloys is now well understood
- Significant progress in p-type doping of InN has been achieved
- In_{1-x}Ga_xN and possibly also In_{1-x}Al_xN alloys have potential for applications for high efficiency multijunction solar cells
- Large variety of highly mismatched alloys has been synthesized using ion implantation combined with pulsed laser melting.
- First intermediate band semiconductor has been demonstrated.
- ZnO_xTe_{1-x} alloys is a promising material for high efficiency intermediate band solar cells

