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Variola major virus, the causative agent of smallpox, encodes a
dual-specificity H1 phosphatase. Because this enzyme is
essential for the production of mature virus particles, it is an
attractive molecular target for the development of therapeutic
countermeasures for this potential agent of bioterrorism. As a
first step in this direction, the crystal structure of H1
phosphatase has been determined at a resolution of 1.8 Å.
In silico screening methods have led to the identification of
several small molecules that inhibit Variola H1 phosphatase
with IC50 values in the low micromolar range. These molecules
provide novel leads for future drug development.
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1. Introduction

Reversible protein phosphorylation, mediated by kinases and
phosphatases, is a central mechanism of signal transduction in
higher eukaryotes that regulates cell development, differ-
entiation and death (Hunter, 1995). As such, the modulation
of phosphorylation offers a potential means of therapy for a
wide variety of maladies. Most protein kinases phosphorylate
either tyrosine or serine and threonine residues (Taylor et al.,
1995). Protein phosphatases come in three common varieties:
the protein tyrosine phosphatases (PTPases), the serine/
threonine phosphatases and the dual-specificity phosphatases
(DUSPs), which are capable of dephosphorylating tyrosine,
serine and threonine residues (Martell et al., 1998). Although
the relatively large number of protein kinases (428) and
phosphatases (99) encoded by the human genome (Ducruet et
al., 2005) naturally raises some concerns about the specificity
of inhibitors, potent and specific inhibitors of both classes of
enzymes have been developed in recent years, providing proof
of principle for this method of therapeutic intervention (e.g.
Sohn et al., 2003; Sawyer et al., 2005).

Certain viruses and bacterial pathogens of plants and
animals also encode kinases and phosphatases that contribute
to virulence by modulating host signal transduction pathways
(Leader, 1993; Cozzone, 2005). Accordingly, these enzymes
are considered to be attractive molecular targets for the
development of therapeutic agents to combat the infectious
diseases that they cause. For instance, the protein tyrosine
phosphatase YopH has been the focus of efforts to develop
countermeasures for Yersinia pestis, the causative agent of
plague and a potential agent of bioterrorism (Lee et al., 2003,
2005; Liang et al., 2003; Phan et al., 2003; Sun et al., 2003;
McCain et al., 2004; Hu & Stebbins, 2005; Tautz et al., 2005).
Similarly, although officially eradicated (Stewart & Devlin,
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2005), the smallpox virus (Variola major) is still considered to
represent a potential bioterrorist threat (Harrison et al., 2004).
Variola virus encodes a dual-specificity protein phosphatase
(H1) that is essential for viral replication (Liu et al., 1995) and
may therefore present an opportunity for therapeutic inter-
vention. In addition to providing potential therapy for
infected people, the availability of antiviral drugs could
decrease the risks associated with the smallpox vaccine by
providing an alternative for vaccine-sensitive individuals.
Common starting points for the development of enzyme

inhibitors include substrate analogs, random screening and in
silico screening (Bleicher et al., 2003). Irrespective of which
approach is taken, detailed information about the three-
dimensional structure of the target enzyme and its complexes
with inhibitors is highly desirable. Although the structures of
several dual-specificity protein phosphatases have been
determined (e.g. Yuvaniyama et al., 1996; Fauman et al., 1998;
Farooq et al., 2001, 2003; Kozlov et al., 2004; Jeong et al., 2005;
Sun et al., 2005; Yoon et al., 2005; Jeong, Cho et al., 2006; Jeong,
Yoon et al., 2006), none of them are similar enough to H1
phosphatase to enable an accurate homology model to be
constructed. In order to overcome this difficulty, we success-
fully determined the structure of this crucial viral protein and
employed an in silico screening strategy to identify several
lead compounds with IC50 values in the low micromolar range
for further development.

2. Materials and methods

2.1. Crystallization, derivatization and data collection

Recombinant H1 phosphatase was overproduced and
purified as described by Tropea et al. (2006), while the incor-
poration of selenomethionine followed the procedure of
Doublié (1997). The peak fractions from a gel-filtration
column corresponding to monomeric enzyme were pooled and
concentrated to 8.5 mg ml!1 in 50 mM MES buffer pH 6.0.
Sparse-matrix screens from Hampton Research were set up
using a Hydra II Plus One (Matrix Technologies) crystal-
lization robot and multiple hits were observed after a few days.
At a 1:4 ratio of protein to precipitant, Hampton Research
(HR) Index Screen condition No. 47 (28% polyethylene glycol
monomethyl ether 2000, 0.1 M bis-tris pH 6.5) and HR PEG/
Ion Screen condition No. 2 (20% polyethylene glycol 3350,
0.2 M potassium fluoride) yielded thin trapezoid and rhombic
plates that scattered X-rays, but not well enough for data
collection. Therefore, HR Index Screen condition No. 47 was
used in a PEG MME 2000 grid to scan for the optimal
potassium fluoride concentration, leading to the identification
of two crystal forms: P4 (24% PEG MME 2000, 1.7 M KF,
0.1 M bis-tris pH 6.5) and C2221 (20% PEGMME 2000, 0.6 M
KF, 0.1 M bis-tris pH 6.5). Additionally, attempts to cocrys-
tallize H1 phosphatase with sodium orthovanadate, a
competitive inhibitor of PTPases, yielded yet another type of
tetragonal crystal (I4122) even though the ion did not bind.
These conditions consisted of 26% PEGMME 2000, 1.5 MKF,

3 mM Na3VO4 and 0.1 M bis-tris pH 6.5 with a protein:
precipitant ratio of 3:1.

Native data were collected for all three space groups to
2.0 Å with high completeness and the coordinates of human
vaccinia H1-related phosphatase (PDB code 1vhr) were used
as a search model in an attempt to solve the structure by
molecular replacement. Since no credible solution was found,
conventional heavy-atom compounds were screened using all
crystal forms, but no useful derivative was obtained. Finally,
the structure was solved by the multiwavelength anomalous
dispersion (MAD) technique using selenomethionine-substi-
tuted protein. Fortuitously, the selenomethionyl protein crys-
tallized reproducibly in the space group with the highest
symmetry (I4122) under the same conditions as the native
protein. The mother liquor was supplemented with 5%
glycerol as a cryoprotectant before flash-freezing the crystals
for data collection at SER-CAT insertion-device beamline 22-
ID (Advanced Photon Source, Argonne National Labora-
tory). A fluorescence scan of the selenomethionine-derivative
crystal confirmed the incorporation of Se atoms. Data were
collected at the absorption edge and the peak wavelengths and
were reduced using the HKL-2000 suite of programs (Otwi-
nowski & Minor, 1997).

2.2. Structure determination and refinement

Highly redundant 1.8 Å MAD from the I4122 crystal were
used in the SHARP program (de La Fortelle & Bricogne,
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Table 1
Crystallographic data, phasing and refinement statistics.

Values in parentheses are for the last shell.

Space group I4122
Unit-cell parameters (Å) a = b = 101.4, c = 95.1
Data set Se peak Se inflection
Wavelength (Å) 0.9792 0.9794
Resolution (Å) 25–1.8 (1.86–1.8) 25–2.0 (2.07–2.0)
Unique reflections 22420 16386
Completeness (%) 96.0 (97.8) 95.2 (98.0)
Redundancy 7.5 (7.2) 7.6 (7.3)
I/!(I) 12.9 (5.0) 16.1 (4.4)
Rmerge† (%) 10.0 (39.0) 8.6 (39.0)
No. of sites 9
Phasing power

Anomalous 1.30
Isomorphous (centric/acentric) 0.42/0.49

Correlation coefficient (25–1.8 Å)
After density modification 0.92
R factor for Fc versus Fo 0.14

Refinement resolution (Å) 25–1.8
Rcryst (%) 17.8
Rfree (%) 19.5
Ramachandran plot

Most favorable (%) 88.6
Allowed (%) 11.4

Average B factor (Å2) 31.8
B factor from Wilson plot (Å2) 28.9
R.m.s.d. bonds (Å) 0.021
R.m.s.d. angles (#) 1.62
No. of molecules in ASU

Polypeptide 1
Solvent 190

† Friedel-related reflections were treated as equivalent.
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1997) to solve the structure. High-occupancy selenium posi-
tions were located for all but the N-terminal selenomethio-
nine. After density modification, the correlation coefficient
was 0.92 and the R factor for Fc versus Fo was 0.14 for data in
the resolution range 25–1.8 Å (Table 1). The structure was
traced automatically using the programARP/wARP (Morris et
al., 2004) as implemented in the SHARP interface. Manual
correction of the model was carried out using the graphics
software O (Jones et al., 1991) and the SeMet-substituted
structure was refined against the peak data using REFMAC5
(Murshudov et al., 1997). Structure validation was accom-
plished using PROCHECK (Laskowski et al., 1993).

2.3. Molecular modeling

The well refined model of Variola H1 phosphatase was
loaded into SYBYL 7.0 (Tripos Inc.), where solvent molecules
were removed, H atoms added and charges assigned. The
structure was then used as the receptor for a virtual screen of
the Diversity Set of 1990 compounds from the Developmental
Therapeutics Program of the National Cancer Institute using
the program AutoDock 3.05 (Morris et al., 1998). The Olson
group at the Scripps Research Institute have composed a
virtual library of these compounds by adding H atoms and
partial atomic charges and have made it available for use with
AutoDock. The docking grid was centered on the S atom of
the catalytic cysteine with a radius of 7.4 Å. The Lamarckian
genetic algorithm was used at default settings for ligand
conformational search. Top hits with inhibition constants in
the micromolar range were re-scored with the program
X-score for additional filtering of the active compounds (Wang
et al., 2002). Although the scoring function in AutoDock is
known to be reasonably accurate, X-score uses a large training
set based on real experimental data for macromolecular
ligand-binding interactions.

2.4. Enzyme assays

The Variola H1 phosphatase-catalyzed reaction was
conducted at room temperature using p-nitrophenol phos-
phate (pNPP) as the substrate in 1 ml of assay buffer
containing 100 mM bis-tris pH 6.5, 1 mM dithiothreitol, 1 mM
ethylenediaminetetraacetic acid and 10% dimethylsulfoxide.

For inhibition assays, approximately 5 mg enzyme was pre-
incubated with various concentrations of the inhibitor for
10 min before adding substrate to a final concentration of
200 mM (approximately equal to the KM) to initiate the reac-
tion. The developing product was monitored continuously for
3 min at 405 nm on a Shimadzu UV–Vis spectrophotometer.
The average absorbance per unit time was calculated using the
installed kinetics program at various inhibitor concentrations
and converted to the amount of product formed using a molar
extinction coefficient of 18 000 M!1 cm!1 for pNPP. The
relative activity was plotted against the inhibitor concentra-
tion using the program SigmaPlot to determine IC50 values.

3. Results and discussion

3.1. Crystallization and structure solution

The Variola H1 PTPase, which is strongly inhibited by
monovalent salts in vitro (Tropea et al., 2006), responded to
changes in ionic strength by crystallizing in different space
groups. Increasing the potassium fluoride concentration
caused the enzyme to shift from the orthorhombic space group
C2221 to the primitive tetragonal group P4 or, in the presence
of sodium orthovanadate, to I4122. Surprisingly, the latter
crystal form did not have vanadate bound in the active site
even though the concentration of the ligand in the mother
liquor exceeded 1 mM. This may have been a consequence of
the relatively low affinity of H1 phosphatase for vanadate
(data not shown) and/or a chemical reaction with some
component of the crystallization cocktail (a yellow tint was
observed upon mixing).

The structure of H1 phosphatase was solved in space group
I4122 by the multiwavelength anomalous diffraction (MAD)
technique using selenomethionine-substituted protein
(Table 1). The MAD-phased experimental map calculated at a
resolution of 1.8 Åwas of excellent quality, allowing automatic
tracing of all residues except the N-terminal serine (a non-
native residue introduced during cloning) and the four
C-terminal amino acids. The structure in space group C2221
was subsequently solved by molecular replacement (data not
shown). Apart from differences in a few disordered side chains
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Figure 1
Ribbon model of the V. major H1 phosphatase shown with a rainbow
coloring scheme. The enzyme crystallized as a domain-swapped dimer.
The N- and C-termini of the two subunits are labeled in blue and green.
The catalytic residue Cys110 is highlighted in bond and CPK format.
Figs. 1 and 2 were prepared using the programs MOLSCRIPT (Kraulis,
1991) and RASTER3D (Merritt & Murphy, 1994).

Figure 2
Comparison of Variola H1 phosphatase with human VHR phosphatase.
The ribbon model of the VHR monomer (magenta) is superimposed on a
subunit of the H1 dimer (blue and green). The N-terminal helix of VHR
has a similar conformation to that of the swapped molecule (green). The
catalytic Cys110 of H1 is shown in ball-and-stick representation.
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and loop regions, the I4122 and C2221 crystal forms yielded
almost identical structures. The C2221 structure was not
refined because the virtually identical I4122 structure was
clearly of superior quality. The data obtained from the P4
crystals were not good enough to enable structure solution.

3.2. Description of the structure

In both crystal forms VariolaH1 phosphatase crystallized as
a domain-swapped dimer (Fig. 1), with the intermolecular axis
lying along the crystallographic twofold axis. The swapped
element is the N-terminal "-helix, which rotates around a
single bond in order to interact with the corresponding part of
the neighboring molecule. As observed in other domain-
swapped structures, the intermolecular interactions are mainly
hydrophobic in nature (Nioche et al., 2002). In the swapped
position, the N-terminal helix forms a four-helix bundle with
the three C-terminal helices from the adjacent molecule. It is
oriented perpendicularly to the helix adjacent to the C-term-
inal helix and interacts with the corresponding element from
the neighboring subunit at its base, while the two N-termini
point away from each other at a right angle (Fig. 1). The
N-terminal "-helix could presumably adopt a very similar
conformation to that of its swapped counterpart in an intra-
molecular configuration. The swapped helices are connected
to the remainder of the polypeptides from which they origi-
nate by an 11-residue-long loop, giving Variola H1 phospha-
tase a distinctive appearance. It is unclear whether the
observed dimer is biologically relevant or is just a crystallo-
graphic artifact (Tropea et al., 2006). In any case, the environ-

ment of the enzyme active site is not perturbed by the helix
swapping.

3.3. Comparison with human vaccinia H1-related
phosphatase (VHR) and other DUSPs

As expected, the overall fold of H1 phosphatase is similar to
that of human vaccinia H1-related phosphatase (VHR; Fig. 2).
A structural comparison with coordinates available from the
Protein Data Bank using the programDALI (Holm & Sander,
1995) yielded five phosphatases with high alignment Z scores:
18.0, 17.4, 13.9, 13.8 and 13.0 for human DUSP22 or JSP-1
(PDB code 1wrm), VHR (PDB code 1vhr), phosphoinositide
phosphatase PTEN (PDB code 1d5r), cyclin-dependent kinase
inhibitor 3 (PDB code 1fpz) and Cdc14b2 phosphatase (PDB
code 1ohc), respectively. In such comparisons, Z scores greater
than 3.0 are usually considered to indicate significant struc-
tural similarity. However, all of these proteins have only
limited sequence identity to H1 phosphatase, ranging from
13% to 28% for the aligned segments, which constitute 75–
85% of their total lengths. Despite the high degree of struc-
tural similarity between H1 phosphatase, DUSP22 and VHR,
the distribution of electrostatic potential and topographical
details of the surfaces are quite different owing to the varia-
tion in their amino-acid sequences (Fig. 3). The negatively
charged residues are concentrated at one end of the molecule
(bottom) in VHR and, to a lesser extent, in DUSP22, whereas
they are localized toward the middle in Variola H1. In the
Variola H1 molecule, instead of negatively charged residues
there is a long hydrophobic groove (bottom) left exposed by
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Figure 3
Space-filling models of the Variola H1 (left), human DUSP22 (center) and VHR (right) phosphatases with electrostatic potentials mapped onto their
molecular surfaces. The potentials are colored from red (!18kT/e) to blue (+18kT/e), where k is the Boltzmann constant, T is the temperature and e is
the charge of the electron. White areas represent neutral and hydrophobic amino acids. The active-site residues, including the catalytic cysteine located at
the bottom of the phosphate-binding loop, are labeled. This figure was prepared using MOLSCRIPT (Kraulis, 1991), GRASP (Nicholls, 1992) and
RASTER3D (Merritt & Murphy, 1994).
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the N-terminal helix that is involved in the intermolecular
swapping interaction.
An alignment of multiple DUSP structures (Fig. 4) reveals a

conserved core around the phosphate-binding loop comprised
of the central #-sheet and the four C-terminal "-helices and
several variable regions at both termini and the #3/#4, #4/"3
and "4/"5 loops (see Fig. 1 for numerical assignments of
"-helices and #-strands). Additionally, there are two inserts
that take the form of twisted loops between #2/"2 and #3/#4
that vary in length relative to the H1 phosphatase. The marked
differences in the length and orientation of the N- and
C-termini are a consequence of the fact that many of these
DUSPs are multi-domain enzymes. Accordingly, rather than
playing a role in substrate binding or catalysis, the sequences
adjacent to the ends of these catalytic domains serve as linkers
to other domains.

3.4. Analysis of the Variola H1 phosphatase active site

At the heart of all phosphatases is the highly conserved
phosphate-binding loop comprised of the consensus sequence
HC(X)5R(S/T), with the catalytic cysteine located in the
center of the loop (Aqvist & Kolmodin, 2001; Denu & Dixon,
1998; Zhang, 1998). Superposition of the C" traces of H1 and
related phosphatases reveals that while the backbone amide
groups of the loop residues (X5) interact with the phosphate
ion, their side chains determine the topology of the binding
surface and therefore contribute to substrate specificity by
lining the mouth of the active-site pocket. Furthermore, resi-
dues from the two insert loops #2/"2 and #3/#4 and the
equivalent of the catalytic WPD loop in PTPases (loop #4/"3)
shape the periphery of the substrate-binding pocket. More
significantly, the aspartic acid Asp79 in the WPD-equivalent
loop of H1 phosphatase (Asp57 and Asp92 in DUSP22 and
VHR, respectively) occupies a similar position to the aspartic
acid residues in the classical PTPs (Asp356 in YopH; Asp181

in PTP1B; Asp425 in SHP-2; Asp1490 in LAR), which are
known to act as the general acid during the enzyme-catalyzed
hydrolysis of phosphotyrosine by these PTPases. The
carboxylate groups of the WPD aspartates point toward the
phenolic oxygen of the substrate phosphotyrosines. In the
unbound H1 structure, the corresponding loop seems to be in
the closed conformation, in which Asp79 instead interacts with
the amide groups of Asn115 and Asn155.

The X5 residues are very similar in H1 phosphatase and
human DUSP22, but differ significantly from their equivalents
in VHR and other enzymes (Fig. 3). They are Val, Ala, Gly,
Val and Asn for H1, Leu, Ala, Gly, Val and Ser for DUSP22
and Arg, Glu, Gly, Tyr and Ser for VHR. The glycine in the X3

position is invariant because it accommodates a necessary
steric constraint on the phosphate-binding loops. The large
and charged/polar side chains at positions X1, X2 and X4 in
VHR create a deeper and electrostatically different binding
pocket compared with those of H1 and DUSP22. In addition,
the side chain of Met69 in VHR is in hydrophobic contact with
a methylene group of the bound HEPES molecule [4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid], while the rest
of the piperazineethane moiety stacks against the aliphatic
part of Glu126 and the aromatic ring of Tyr128. In the PTEN
structure, the side chain of Val45 lines the mouth of the active
site, while the phenyl ring of Tyr46 packs against the aliphatic
part of Lys125, a phosphate-binding loop residue. None of
these interactions are possible in the H1 binding site because it
lacks the insert loops and possesses Ala112 and Val114 instead
of the longer side chains found in VHR and PTEN. Never-
theless, the side chains of Ala112, Val114 and Val111 effec-
tively mimic the aliphatic portions of Glu126, Tyr128 and
Arg125 in VHR or Ala126, Lys128 and Lys125 in PTEN,
respectively, because the charged ends of these side chains in
the latter two enzymes point away from the active site in a
manner that maximally exposes their hydrophobic trunks. In
effect, the active site of H1 phosphatase is broader and shal-

lower than the active sites of the other
DUSPs, with the exception of human
DUSP22, which has almost identical amino
acids in these positions. The only two X5-
loop residues that differ between H1 and
DUSP22 are Val111 and Asn115, and Leu89
and Ser93 (X1 and X5), respectively. The
serine in DUSP22 forms a hydrogen bond to
the carboxylate group of the catalytic
aspartate Asp57 (Asp79 and Asp92 in H1
and VHR, respectively) as opposed to the
asparagine amide group, which makes a
stronger hydrogen-bond donor. Further-
more, this amide group can also form a
hydrogen bond with the phenolic oxygen of
pTyr more readily than can the serine side
chain. Otherwise, the two active sites are
very similar in shape and size compared with
those of other DUSPs, including human
VHR. Therefore, DUSP22 appears to be the
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Figure 4
Please provide an improved version of this figure – Superposition of the C" traces of the six
structurally similar DUSPs Variola H1 (green), human DUSP22 (blue), human VHR (red),
phosphoinositide phosphatase PTEN (grey), cyclin-dependent kinase inhibitor 3 (magenta)
and Cdc14b2 phosphatase (cyan) shown in stereoview. This figure was prepared using the
program O (Jones et al., 1991). See Fig. 1 for the numbering of "-helices and #-strands.

Files: d/dz5103/dz5103.3d d/dz5103/dz5103.sgml DZ5103 FA IU-0715/47(19)4 715/46(19)4 DZ5103 PROOFS D:FA:2007:63:5:0:0–0



best enzyme with which to gauge the specificity of H1 phos-
phatase inhibitors.

3.5. Lead discovery

In an attempt to identify potential inhibitors, we used the
high-resolution structure of H1 phosphatase as a starting point
for in silico screening of the Structural Diversity Set of
Compounds from the Developmental Therapeutics Program
of the National Cancer Institute (Fig. 5). Of approximately
two dozen top-scoring compounds that were tested, one third
were found to be insoluble in aqueous solution. Four of the
soluble compounds exhibited measurable inhibitory activity.
These were NSC-62914, NSC-28086, NSC-105687 and NSC-
23173, with IC50 values of 48, 51, 212 and 342 mM, respectively.
In silico screening of the CalBiochem phosphatase-inhibitor
library identified two additional compounds (catalog Nos.

540211 and 217691) as possible leads and these were subse-
quently shown to have IC50 values against H1 phosphatase of 4
and 11 mM, respectively.

All of the inhibitors identified above possess an aromatic
ring adjacent to a polar head group, which is reminiscent of
phosphotyrosine. Accordingly, this may indicate that the
enzyme preferentially dephosphorylates phosphotyrosine
residues rather than serine or threonine. The polar head
groups of the inhibitors may interact with the phosphate-
binding loop of the enzyme while the aromatic moiety stacks
against the active-site arginine. Ligands with additional
hydrophobic groups could potentially be accommodated by
the shallow groove formed by alanine and valine residues at
the mouth of the active site in H1 phosphatase. Developing
inhibitors of H1 phosphatase and other DUSPs with high
potency may present a significant challenge because of their
comparatively shallow substrate-binding grooves. However,

the prospects for developing inhibitors
with high selectivity for H1 phosphatase
seem promising because the substrate-
binding sites of the dual specificity
phosphatases exhibit a much greater
degree of variability than do those of
their PTPase counterparts.

A potential advantage of the H1
phosphatase inhibitors identified in this
study is that they have been pre-filtered
for favorable drug-like properties.
Efforts to cocrystallize these inhibitors
with the Variola enzyme are currently
under way. It is hoped that the resulting
structural information will reveal a
common pharmocophore and suggest
ways in which the potency and specifi-
city of the inhibitors can be further
improved. It will also be important to
obtain at an early stage information
about the specificity, toxicity and bio-
availability of these compounds and
their derivatives and appropriate
resources are currently being assembled
to address these issues. Although we
hope that one will never be needed, the
availability of an effective therapeutic
countermeasure for the smallpox virus
would be very reassuring indeed.

We thank Scott Cherry for growing
the cells used to incorporate seleno-
methionine into H1 phosphatase.
Diffraction data were collected at the
Southeast Regional Collaborative
Access Team (SER-CAT) beamline
22-ID located at the Advanced Photon
Source, Argonne National Laboratory.
Use of the Advanced Photon Source
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Figure 5
Structures, molecular weights and experimentally determined IC50 values of the most potent
inhibitors identified by virtual screening of Variola H1 phosphatase. This figure was prepared using
ChemDraw (CambridgeSoft).
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