Spectroscopic observation of simultaneous bi-directional outflows in SSX

Michael Brown

Swarthmore College, NSF Center for Magnetic Self-Organization

with contributions from

T. Gray, V. Lukin, C. Myers and Swarthmore undergraduates

Magnetic Reconnection 2012 Princeton University, May 23, 2012

Research supported by US DOE and NSF

Outline

- Overview of SSX experiment
- Merging, reconnection and relaxation
- Myers simulation, SSX measurement of outflows
 - Tim Gray talk next

The SSX Laboratory

Cylindrical vacuum chamber (D = 0.5 m, L = 1 m)

High voltage plasma guns on each end

SSX parameters

Ion Density (protons)	10^{14} - 10^{15} cm ⁻³
Temperature (T _e ,T _i)	20 - 80 eV
Magnetic Field	0.1 Tesla
Ion gyroradius	0.5 cm
Alfvén speed	100 km/s
S (Lundquist number)	>1000
Plasma β	10-100%
Poloidal flux	3-4 mWb

Spheromak formation

Plasma merging paradigm

Rapid merging of two rings

Single structure is formed

Spheromak merging

Counter-helicity merging and relaxation

- 3D MHD simulation (HYM) 3:1
- Close comparison to experimental data
- See papers by C. Cothran and C. Myers
- C. Myers, et al, Phys. Plasmas Nov. 2011

SSX device (counter-helicity)

- Opposing magnetized plasma guns
- Prolate flux conserver (L=0.6m, R=0.2m)
- Reconnection at midplane
- Merged state relaxes to minimum energy

Ion dynamics during counter-helicity merging and relaxation

- Heating and complex flows early
- Relaxed state characterized by single temperature Maxwellian

Ion Doppler spectrometer on SSX

Interferometer chord and two magnetic probes also shown

Typical Doppler line shapes in SSX during reconnection and relaxation (C_{III} line)

Double Maxwellian line shape early and single Maxwellian late in time

HYM simulation predicts outflows

Measurement of 3D structure

200 triples 2 cm spacing 1 μs cadance, t = 40 μs

Direction of outflows

Measured bi-directional outflows

30.4 km/s radially out and 38.1 km/s radially in (+/- 0.3 km/s)... or about 0.5 V_A at 40 μ s, external measurements predict internal structure

IDS ion temperature measurement 25 shot average, C_{III} 229.69 nm, prolate

Ion heating evident from 30-40 μ s in the more compact 2:1 flux conserver

Summary

3D MHD simulation shows outflow jets and magnetic structure similar to SSX experiment

IDS measurement shows simultaneous bi-directional, nearly Alfvenic outflow jets that reveal aspects of internal structure

Mean electron density and temperature for IDS runs (counter-helicity)

Density measured with HeNe interferometer T_e measured with VUV spectroscopy (Chaplin, et al)

Carbon ion collision times (20 eV proton temperature)

Carbon ion energy

Argon, Carbon, Helium ion temperature vs Z/M

Z/M scaling consistent both early and late in time (He and C)

Ion temperature in the low corona vs. Z/M

Dolla and Soloman, Ann. Geophys. 2009 40,000 km above the solar surface Large set of lines, SUMER spectrometer

Probe data for counter-helicity merging

Similar dynamics and final state as seen in simulation

Aspect ratio scan of SSX flux conservers

a) prolate 3:1, b) oblate 1:1, c) slightly-prolate 2:1, d) super-prolate 10:1 (MHD wind tunnel)

Merging studies in several different experimental shapes (co-helicity)

Magnetic field structure measured in 4 different vessels in SSX (prolate 3:1, oblate 1:1, slightly-prolate 2:1, super-prolate 10:1)

Initial high velocity flows and fluctuations

Relaxed state (Taylor double helix)

Compare to predicted Taylor state

DB: ssx_superpro.8mm.hts.0001.vtk Cycle: 1

- X

DB: ssx_superpro.8mm.hts.0001.vtk Cvcle: 1

_ X

user: tgray Thu Feb 4 16:17:09 2010 user: †gray Thu Feb 4 16:17:29 2010

Measured β is high (about 0.5)

Despite high β and large flows, Taylor model fits well

Other shots show quadrupole

