Kinetic-Global Coupling in Coronal HSD

Reconnection S. K. Antiochos NASA/GSFC

© 2008 Miloslav Druckmüller, Peter Aniol, Martin Dietzel, Vojtech Rušin

- B adds both structures and dynamics to corona and beyond ullet
- Couples global and physical domains

Coronal Dynamics

Observations:

- Corona exhibits activity at all scales
- SOHO EIT Fe XII 195 A, T ~ 1.5MK
- Prominence ejection/ CME/flare: largest forms of explosive activity
 - Primary drivers of space weather
 - Flare heating/particles due to coronal reconnection
 - CME acceleration still debated

Coronal Activity

Physical properties of Sun's corona:

- $T \sim 10^6 \,\mathrm{K}, \ n \sim 10^9 \,\mathrm{cm}^{-3}, \ B \sim 10^2 \,\mathrm{G},$
- $V_A \sim 1,000$ km/s, $V_S \sim 100$ km/s, $V_{photo} \sim 1$ km/s
- $L \sim 10^9 \text{ cm}, \ \lambda_{mfp} \sim 10^7 \text{ cm}, \ \lambda_g \sim \lambda_i \sim 100 \text{ cm}$
- $\tau_{\rm c} \sim 1 \, {\rm s}, \, {\rm f_p} \sim 10^8 \, {\rm /s}, \, {\rm f_{cp}} \sim 10^4 \, {\rm /s}$
- Low plasma $\beta \sim 10^{-2}$
- High Lundquist number $\sim 10^{10}$
 - Negligible diffusion, plasma frozen-in to B-field
 - <u>B topology and reconnection all-important</u>
- High- β , line-tied photosphere E & K source
- But system open to heliosphere E & K sink

Magnetically Driven Solar Activity

- Coronal energy injected quasi-statically ($\tau \ll t_A$) due to slow (V ~ 1 km/s) photospheric stressing
- Free energy builds up to critical levels, E ~ 10³² ergs for CMEs/flares
 - Energy input & storage on global scales
- <u>Energy lost either through ejection to heliosphere or</u> <u>heating/particles via reconnection</u>
- But reconnection conserves helicity

$$K \equiv \int_{V} (\vec{A} + \vec{A_p}) \cdot (\vec{B} - \vec{B_p})$$

• Large-scale shear must be ejected

• HSD

N

2000 OCTOBER

Coronal Free Energy and Helicity

- Strong shear in filament channels overlying polarity inversion lines
- Helicity concentration
- Fundamental origin of ejective activity

Kitt Peak magnetogram

EIT/SOHO UV

Breakout Model for CME/eruptive flares

Striking example of local – global coupling:

- 1. Build up E & K with slow footpoint shear ideal phase
- 2. Reconnection (or ideal) at null disrupts force balance
- 3. Stretching of field lines produces CS below rising flux
- 4. Flare reconnection produces explosive energy release and relaxes system back to ~ potential state,

Coronal Mass Ejection

- Ultra-high resolution amr breakout simulations (Karpen et al 2012)
 - Clearly separates phases of event
- Null current sheet must extend to global scale in order to reach fluxbreaking scale
- Reconnection dynamics dominated by magnetic islands (plasmoid or secondary tearing instability)
- Dependence on η ?

Energy Evolution

HSD

- CME onset corresponds to start of breakout reconnection
- Explosive acceleration corresponds to start of fast flare reconnection

Energy Scaling with S

- Basic onset and take-off evolution unchanged
- Energetics essentially independent of S

HSD

• For numerical resistivity, reconnection keeps pace with eruption

Solar Flare

- Dipolar stretching produces global-scale current sheet
- Extreme energy storage
- Flare
 reconnection
 bulk of energy
 release for CME/
 flares
- Two-phase reconnection, islands appear before Alfvenic motions
- Scaling with η ?

Flare Reconnection

Downward moving islands well before significant dynamics

• First upward moving O-point produces explosive feedback

<u>Plasmoids</u>

- Numbers of "O" nulls in breakout and flare current sheets
 Clear increase during "take-off" phase
- Reconnection "fast" $\sim .09 V_A$

Plasmoid Scaling with S

- Number of islands scales ~ S
- Required for fast reconnection

Conclusions and Challenges:

- Basic model works for numerical or uniform η
- Mechanism for shear buildup?
- Mechanism for force balance disruption: ideal or reconnection?
- Global and local dynamics for true kinetic flux breaking
- How can we capture the multiscale coupling in our models (space weather prediction)?

– (e.g., work by Kuznetsova and Hesse)

MHD

LWS TR&T Focus Team: S. Antiochos NASA/GSFC (Chair), M. Sitnov APL, A. Bhattacharjee UNH, P. Travnicek UCLA, J. Johnson PPPL, P. Yoon UMD, N. Lin UCB

- Strategy:
- Calculate complete energy input and release process with different physics models
 - MHD, Hall MHD, kinetic
- Assume kinetic gives ground truth and determine what needs to be added to MHD to match kinetic

Problems:

- Null-point current sheet formation and reconnection
- B-tail reconnection

Integrating Kinetic Effects into Global MHD

• HSD

Uniform resistivity numerical resistivity J out of plane from MHD simulation: DeVore, Karpen, Black, & Antiochos (GSFC/NRL)

