Reconnection in the Solar Corona

Justin K Edmondson University of Michigan

MHD Reconnection

- Requires a current sheet discontinuity to form in the magnetic field
- Discontinuous magnetic field connectivity (topology) give rise to discontinuous stresses
- Favorable locations for CS formation
 - Along magnetic field separatricies between nested (mulipolar) flux structures
 - Along discontinuities in the boundary flow

Basic Types of Reconnection

- Reconnection across separatricies in a complex magnetic field structure:
 - Nested (multipolar) topologies
 - Null-points (embedded bipolar structures)
 - Relaxation of field line braiding (Parker heating)
 - Ideal instabilities (e.g., kink)
- Heliospheric current sheet Y-point:
 - Pinch disconnection
 - Interchange

Coronal Environment

- Magnetically Dominated: $-\beta << 1$
- Quasi-steady Evolution:
 -V_{Alfven} >> V_{Drivers}
- Highly Non-Dissipative: $-R_m > 10^{10}$
- Ideal MHD (mostly) valid $-\lambda \ll L$

Gary, 2001

Coronal Magnetic Field Structure

SOHO: MDI, EIT 195, 09 Nov 2002

- Photospheric flux distribution governs coronal hole pattern
- Highly complex, nested, multipolar structure

Magnetic Separatrices

- Boundaries between magnetic domains of different connectivity (topology)
- Intrinsic property of magnetic field geometry

NASA SDO: HMI, AIA 171. 10 May 2012

Habbal, et al.

Embedded Bipole

- Simplest, non-trivial structure
- Ubiquitous throughout the corona
- Occurs with all local PIL's, over large range of scales

MDI 14 Jan 2010

EIT 171A 14 Jan 2010

Reconnection: Null-Point / Separatrix

Current Sheet Formation

 Reconnection current sheet along separatrix around deformed null

Topology Remains Smooth

Rigid Body Convection

Pure Helicity Injection

 Coronal holes remain connected via open field corridors

Current Discontinuities

HCS Y-Point Region

Continuous wind →
 HCS Y-point unstable
 Tearing mode
 Fluid instabilities

 Quasi-rigid coronal hole rotation implies continuous opening/closing field

"Streamer blob" plasmoid release

Unstable Streamer Stalk

Karpen et al., 1999

Tearing instability leads to fluid instability

(a)

(d)

08:30 - 07:38

Wang et al., 2000

Summary

- Two favorable regions for CS formation:
 Separatricies bounding nested structures
 Heliospheric Current Sheet Y-point region
- Stress discontinuities across separatrices give rise to reconnecting current sheets
- HCS Y-point region unstable to tearing, which leads to plasmoid acceleration by fluid instability

Quasi-Steady Evolution

