M P Gryaznevich

EURATOM/CCFE Fusion Association, UK

MR2012

2012 US-Japan Workshop on Magnetic Reconnections, Princeton, 23-25 May 2012

This work was jointly funded by the UK Engineering of Physical Sciences Research Council and Euratom

The Team:

<u>M. P. Gryaznevich</u>^a, R Scannell^a, C Michael^a, N Conway^a, K McClements^a, R Martin^a, A Sykes^a, A Zocco^{a,f}, A Thyagaraja^a, C G Gimblett^a, A Schekochihin^{a,f}

Takuma Yamada^b, Hiroshi Tanabe^b, Riota Imazawa^{b,c}, Y Ono^b, Y. Hayashi^b, S. Kamio^b, Akira Ejiri^b, Hiroshi Tojo^{b,c}, and Yuichi Takase^b

A. Stanier^d, P. Browning^d and S. Dalla^e

^A EURATOM/UKAEA Fusion Association, Culham Science Centre, OX14 3DB, UK ^B Graduate School of Frontier Sciences, The University of Tokyo Kashiwa 277-8561, Japan ^cJAERI, Naka, Japan

^d Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK

^eJeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE, UK ^fRudolf Peierls Centre for Theoretical Physics, University of Oxford

CCFE Objectives of Reconnection Studies

• Changes in topology of magnetic field lines ("magnetic reconnection") thought to play important role in redistribution of energy & particles in many astrophysical, space & laboratory plasmas

Three key elements of our studies:

- Provide reliable breakdown and current formation on MAST using merging-compression formation method
- Investigate magnetic reconnections in high temperature low collisional plasmas with extended MAST diagnostics facilities
- Validate reconnection theories providing experimental data for benchmarking

- Magnetic Reconnection studies in laboratory plasma may help understanding solar corona reconnections (and possibly predict consequences ?)

Mega Amp Spherical Tokamak MAST

 $\label{eq:core_parameters:} \begin{array}{l} \mbox{Achieved core parameters:} \\ T_{i}, \, T_{e} \, up \mbox{ to } \sim 3 keV; \, n_{e} \sim 10^{19} \mbox{--} 10^{20} m^{\mbox{--}3}, \, \beta \sim 15\% \, ; \end{array}$

R, m	0.85
a, m	0.65
k	2.4 (3)
I _p , MA	1.4 (2)
B _t , T	0.5
Paux, MW	3 NBI (5) +
	1 EC (1.5)
τ _{pulse} , s	0.75 (5)
Red – design values	

Reconnection studies during last 12 years in collaboration with University of Tokyo and NIFS, Japan:

- Internal Reconnection Events (IRE)
- Magnetic reconnection during merging-compression formation
- First collaboration on IRE studies on START and MAST, T Hayashi, NIFS
 - modelling of START IRE, PhD of Naoki Mizuguchi "Simulation Study on Relaxation Phenomena in Spherical Tokamak" March 31, 2000
- Followed by collaboration with the University of Tokyo
 - studies of MAST IREs, PhD of Hiroshi Tojo, 2008
 - merging-compression studies, PhD of R Imazava, 2010
 - several visitors: Takuma Yamada, Hiroshi Tanabe (current PhD student)
 - on reconnections studies

Close contacts with a number of theory groups at Theory Division of CCFE, Oxford University, Manchester University, St Andrews University etc.

Spontaneous Reconnections:

MAST, chord SXR signals

- **IRE**: global reconnection, starts at periphery, penetrates to the core
- Sawtooth: core reconnection, starts at the core (q~1), penetrates to the edge
- ELM: edge reconnection, starts near the edge, penetrates in both directions

... and "forced" reconnections: merging of two plasma rings during formation

e.g. START Double Null Merging (DNM)

CCFE IRE: 3D resistive MHD simulations:

N. Mizuguchi, T. Hayashi et al., Phys. Plasmas, 7, 940 (2000)

1. Plasma deformation

• IRE is a magnetic reconnection between inside and outside magnetic flux

2. During IRE plasma energy is lost along magnetic field lines through fast parallel transport

 Helical deformation, followed by reconnection, is caused by linear and non-linear growth and coupling of pressure-driven modes

MR during merging-compression

How 2D Te profile was measured: CCFE TS (Ruby and NiYg) measure horizontal (radial) profile 0.5 (b) 0.8 0.4 E 0.6 0.3 plasma was shifted up/down to get vertical profile 0.4 0.2 0 2 0 1 0.3 0.4 (d) 200 0.3 Colour corresponds to 0.2 1⁹ (keV) 1.0 150 0.2 different vertical position Te[eV] P1 P4 100 8 0.6 R (m) 0.4 R (m) 50 0.3 0.3 (f) (e) 0.2

1.0

R(m)

X-point

0.5

0

9

1.5

2.0

200

15C

OC

50

0.1

0

(h)

Time (ms)

Toroidal field scan to benchmark reconnection theories:

Electron heating depends on $B_t!$ (but not ion heating ?)

ion[eV]

400(Bt=0.44[T] at R=0.9[m])

21404(Bt=0.38[T] at R=0.9[m])

CFE Estimates of length & time scales

- Both electrons & ions strongly heated during merging compression in MAST, & at similar rates
- Some estimates of length & time scales (*Ken McClements*):

Alfvén timescale $\tau_A \sim 2\pi/\omega_A \sim \text{few } \mu \text{s}$

2D T_e profiles \Rightarrow current sheet thickness \sim 10 cm

Identifying this as reconnection length scale δ_r , assuming Spitzer resistivity & setting T_e equal to $10^5 \text{ K} \implies \eta = \eta_0 T_e^{-3/2} \sim 5 \times 10^{-5} \text{ ohm m}$

 \Rightarrow resistive timescale $\tau_r \sim 250 \mu s >> \tau_A$

ion skin depth $\delta_i = c/\omega_{pi} \sim 14$ cm, electron skin depth $c/\omega_{pe} \sim 2$ mm,

ion Larmor radius ~ 1 mm, electron Larmor radius ~ 0.01 mm

> electron inertia & finite Larmor radius effects negligible, but Hall term cannot be neglected in induction equation since $\delta_i \sim \delta_r$:

 \Rightarrow two-fluid (or possibly kinetic) analysis of reconnection process is necessary

FE Estimates of length & time scales

Based on rate at which plasma rings approach each other, assuming Spitzer resistivity with $T_e \sim 10 \text{ eV}$, magnetic Reynolds number is of order

$$R_m = \frac{\mu_0 L U}{\eta} \sim 10$$

(NB R_m << Lundquist number since inflow velocity << Alfvén speed)

- highly dissipative plasma
- > Post-reconnection el-ion collisional energy equilibration time $\tau_E \sim 10^2$ ms >> τ_r , & longer than actual equilibration time (~20ms)

If $T_e \sim T_i \sim 10$ eV electron collision time $\tau_e \sim 0.1 \mu s$;

ion collision time $\tau_i \sim 6 \mu s$

- Simulations also potentially relevant to solar corona
 - ➢ plasma beta is similar & high Lundquist number S ≈ 10⁵ implies that resistive scale length could be comparable to or less than ion skin depth

Early Results from Fluid Simulations

<u>Set-up</u>

- Two plasmoids 200 kA each with width = 0.3 m.
- Initial separation = 0.8 m, starting in non-equilibrium (far from P3 coils).
- Constant toroidal field B = 0.5 T, density = $5 \times 10^{18} \text{ m}^{-3}$, deuterium plasma.

Current profile during the merging.

<u>Results</u>

- Merging time: \approx 40 τ_A in resistive MHD (sloshing) \approx 10 τ_A in Hall-MHD ($\delta_i = 0.14$ m)
- Current sheet width \approx 5 mm, pile-up field \approx 0.15 T

• Temperature plots show similar hollow profile to experimental $\rm T_e$ measurements – significant heating contribution by viscous damping of outflows.

Temperature (colour) and B-field (white).

See **Poster** by A. Stanier et al, **Fluid Modelling of Reconnection During Merging-Compression in MAST**

Alessandro Zocco et al, CCFE, see Alessandro Zocco and Alexander A. Schekochihin, *Phys. Plasmas, 18(10) 102309, 2011*

- Electron thermal effects become very important, breaking the isothermal assumptions typically used in electron models, and driving electron-temperature-driven modes.
- Developed hybrid fluid-kinetic relies on a rigorous low- β_e expansion of the electron gyrokinetic equation Kinetic Reduced Electron Heating Model (KREHM)
- The model contains collisions and can be used both in the collisional and collisionless reconnection regimes. The two-fluid dynamics are coupled to electron kinetics electrons are not assumed isothermal and are described by a reduced drift-kinetic equation. The model therefore allows for irreversibility and conversion of magnetic energy into electron heat via parallel phase mixing in the velocity space.
- The model provides a new framework to understand experimental evidences of electron heating in MAST: numerical nonlinear studies (in some simplified cases) show evidences of non-isothermal effects in weakly collisional reconnection.

Summary

- Merging-compression method of start-up in MAST provides opportunity to study reconnection in high temperature plasma with strong guide field, under conditions approximating those of solar corona
- Reconnection associated with rapid heating of ions & electrons;
- High frequency instabilities & filamentary structures observed during & following reconnection, suggesting presence of fast ions & turbulence
- Detailed theoretical model of reconnection during merging-compression in MAST yet to be worked out and any such model would need to include two-fluid (& possibly kinetic) effects
- Focus of solar flare acceleration studies generally on electrons, since these can be detected whereas sub-MeV ions cannot (at least not easily); but MAST reconnection results suggest that reconnection leads more naturally to acceleration of ions than of electrons
- Detailed studies of ion and electron heating, utilising unique diagnostic capability of MAST, are on-going in collaboration with the University of Tokyo and other groups

Back-up slides

H. Tojo et al., submitted to PPCF

Experimental observations:

Time development of the total magnetic

• Appearance of a faster n = 2 mode followed by <u>non-linear toroidal coupling</u> of two modes (phase alignment)

 Violation of a local stability threshold due to coupling (phase alignment) may also cause ballooning modes

- Low frequency MHD is always present during and after reconnection
- Chirping modes evidence for fast ions

Instabilities in Low Hybrid frequency range have also been observed during reconnection – one of possible causes of anomalous heating

Filament ejection in MAST

4.9 ms

5.0 ms

5.1 ms

minimum subtracted

average subtracted

- Filamentary structures can be seen during merging compression in background- subtracted optical images
- These are observed following spike in line-integrated density, implying radial ejection of plasma following reconnection

Goals of reconnection studies:

- reconnection during m/c: astrophysics, diagnostics, theory
- IRE studies: scenario development
- sawteeth: next step?
- ELMs: next step?

