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Objectives of Reconnection Studies 

Three key elements of our studies: 
•   Provide reliable breakdown and current formation on MAST using 
merging-compression formation method 
•   Investigate magnetic reconnections in high temperature low collisional 
plasmas with extended MAST diagnostics facilities 

•   Validate reconnection theories providing experimental data for 
benchmarking 

-­‐	
  Magne(c	
  Reconnec(on	
  studies	
  in	
  laboratory	
  plasma	
  may	
  help	
  
understanding	
  solar	
  corona	
  reconnec(ons	
  (and	
  possibly	
  predict	
  
consequences	
  ?)  

•  Changes in topology of magnetic field lines (“magnetic reconnection”) 
thought to play important role in redistribution of energy & particles in 
many astrophysical, space & laboratory plasmas 
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Mega Amp Spherical Tokamak MAST 

 
R, m 0.85 
a, m 0.65 

k 2.4 (3) 
Ip, MA 1.4 (2) 
Bt, T 0.5 

Paux, MW 3 NBI (5) + 
1 EC (1.5) 

τpulse, s 0.75 (5) 
  Red – design values 

Achieved core parameters:  
Ti, Te up to ~ 3keV; ne ~ 1019-1020m-3, β ~ 15% ;  
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Reconnection studies during last 12 years in collaboration 
with University of Tokyo and NIFS, Japan: 

 - Internal Reconnection Events (IRE) 

 - Magnetic reconnection during merging-compression formation 

•  First collaboration on IRE studies on START and MAST, T Hayashi, NIFS 
 - modelling of START IRE, PhD of Naoki Mizuguchi 
“Simulation Study on Relaxation Phenomena in Spherical Tokamak” 
March 31, 2000 

•  Followed by collaboration with the University of Tokyo 
 - studies of MAST IREs, PhD of Hiroshi Tojo, 2008 
 - merging-compression studies, PhD of R Imazava, 2010 
- several visitors: Takuma Yamada, Hiroshi Tanabe (current PhD student) 
– on reconnections studies 

Close	
  contacts	
  with	
  a	
  number	
  of	
  theory	
  groups	
  at	
  Theory	
  Division	
  of	
  CCFE,	
  Oxford	
  
University,	
  Manchester	
  University,	
  St	
  Andrews	
  University	
  etc. 

Reconnection Studies on MAST 
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Spontaneous 
Reconnections: 

MAST, chord SXR signals 

 IRE: global reconnection, starts at 
periphery, penetrates to the core  

•  Sawtooth: core reconnection, 
starts at the core (q~1), penetrates 
to the edge 

•  ELM: edge reconnection, starts 
near the edge, penetrates in both 
directions 

Ip     IRE 
Density 
Dα 
 
SXR, z = 0 

z = 11.3cm 

z = 23.8cm 

z = 37.3cm 

z = 51.3cm 

 

 
 
 
Dα        sawtooth 
Density 
SXR, z = 0 
z = 5.3cm 
z = 11.3cm 
z = 17.3cm 
z = 23.8cm 
z = 30.3cm 
z = 37.3cm 
z = 44.3 cm 
z = 51.3 cm 
z = 58.3cm 
 
 
 
Dα          ELMs 
Density 
 

SXR,z =  44.3cm 
z = 51.3 cm 
z = 58.3 cm 
z = 65.3 cm 
z = 73.3 cm 
z = 81.3 cm 
z = 89.3 cm 
z = 97.3 cm 
 

midplane 

edge 

Reconnections in tokamaks: IRE, sawtooth, ELM and “forced” 

… and “forced” reconnections: merging 
of two plasma rings during formation  
e.g. START Double Null Merging (DNM) 

edge 

edge 
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1. Plasma deformation 
•  IRE is a magnetic reconnection between 
inside and outside magnetic flux 

2. During IRE plasma energy is 
lost along magnetic field lines 
through fast parallel transport 

•  Helical deformation, followed by reconnection, is caused by linear and 
non-linear growth and coupling of pressure-driven modes  

IRE: 3D resistive MHD simulations:   

Plasma deformation Energy flow CCD picture, START 

N. Mizuguchi, T. Hayashi et al., Phys. Plasmas, 7, 940 (2000) 
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MR during merging-compression 

Takuma Yamada et al. submitted to Phys. Rev. Lett.  
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Very high ion and electron temperatures, 
in keV range, after reconnection 
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TS (Ruby and NiYg) measure horizontal (radial) profile 
•  plasma was shifted up/down to get vertical profile 

Colour corresponds to 
different vertical position 

R, m 

EFIT reconstruction 
after reconnection 

Electron heating depends on Bt ! (but not ion heating ?)  
Toroidal field scan to benchmark reconnection theories: 

How 2D Te profile was measured: 
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q  Both electrons & ions strongly heated during merging compression in 
MAST, & at similar rates 

q  Some estimates of length & time scales (Ken McClements): 
Alfvén timescale τA ~ 2π/ωA ~ few µs 

2D Te profiles ⇒ current sheet thickness ~ 10 cm 

Identifying this as reconnection length scale δr , assuming Spitzer resistivity & 
setting Te equal to 105 K (⇒ η = η0Te

-3/2 ~ 5×10-5 ohm m) 

⇒ resistive timescale τr ~ 250µs >> τA  

ion skin depth δi = c/ωpi ~ 14 cm, electron skin depth c/ωpe ~ 2 mm,                    

ion Larmor radius ~ 1 mm, electron Larmor radius ~ 0.01 mm 

Ø  electron inertia & finite Larmor radius effects negligible, but Hall term 
cannot be neglected in induction equation since δi ~δr : 
⇒  two-fluid (or possibly kinetic) analysis of reconnection process is necessary 

Estimates of length & time scales  
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Estimates of length & time scales  

q  Based on rate at which plasma rings approach each other, assuming Spitzer 
resistivity with Te~10 eV, magnetic Reynolds number is of order 

q   (NB Rm << Lundquist number since inflow velocity << Alfvén speed) 

Ø  highly dissipative plasma 

Ø  Post-reconnection el-ion collisional energy equilibration time  τE ~ 102 ms 
>> τr , & longer than actual equilibration time (~20ms) 

q  If Te~Ti ~10 eV electron collision time τe ~ 0.1µs;                                                                

                             ion collision time τi ~ 6µs  

q  Simulations also potentially relevant to solar corona 

Ø  plasma beta is similar & high Lundquist number S ≈ 105 implies that 
resistive scale length could be comparable to or less than ion skin depth 

 

10~0

η
µ LURm =
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Early Results from Fluid Simulations 

See Poster by A. Stanier et al, Fluid Modelling of Reconnection 
During Merging-Compression in MAST 
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Modelling of Electron Heating During MR in MAST 

Alessandro Zocco et al, CCFE, see Alessandro Zocco and Alexander A. Schekochihin, 
Phys. Plasmas, 18(10) 102309, 2011 

•  Electron thermal effects become very important, breaking the isothermal 
assumptions typically used in electron models, and driving electron-temperature-
driven modes.  

•  Developed hybrid fluid-kinetic relies on a rigorous low-βe expansion of the 
electron gyrokinetic equation - Kinetic Reduced Electron Heating Model (KREHM)  

•  The model contains collisions and can be used both in the collisional and 
collisionless reconnection regimes. The two-fluid dynamics are coupled to electron 
kinetics - electrons are not assumed isothermal and are described by a reduced 
drift-kinetic equation. The model therefore allows for irreversibility and conversion 
of magnetic energy into electron heat via parallel phase mixing in the velocity 
space. 

•  The model provides a new framework to understand experimental evidences of 
electron heating in MAST: numerical nonlinear studies (in some simplified cases) 
show evidences of non-isothermal effects in weakly collisional reconnection. 
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q  Merging-compression method of start-up in MAST provides opportunity to study 
reconnection in high temperature plasma with strong guide field, under conditions 
approximating those of solar corona 

q  Reconnection associated with rapid heating of ions & electrons;  
q  High frequency instabilities & filamentary structures observed during & following 

reconnection, suggesting presence of fast ions & turbulence 
q  Detailed theoretical model of reconnection during merging-compression in MAST 

yet to be worked out and any such model would need to include two-fluid (& 
possibly kinetic) effects 

q  Focus of solar flare acceleration studies generally on electrons, since these can 
be detected whereas sub-MeV ions cannot (at least not easily); but MAST 
reconnection results suggest that reconnection leads more naturally to 
acceleration of ions than of electrons 

q  Detailed studies of ion and electron heating, utilising unique diagnostic capability 
of MAST, are on-going in collaboration with the University of Tokyo and other 
groups  

Summary 
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Back-up slides 
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IRE with m/n=2/1 precursor and low-n mode coupling 

2/1 precursor 

Start of IRE 

high-n modes 

H. Tojo et al., submitted to PPCF 

Trace of magnetic shear (S) and 
pressure gradient at q=2 rational 
surface before (0~21ms) IRE. The 
red shaded circles indicate just 
before the IRE. 
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•  Violation of a local stability threshold due to coupling (phase alignment) 
may also cause ballooning modes 

2/1 
5/2 

However, after “excessive” pressure is 
expelled, some modes can become 
stable (“disruption resilience”) 

T Hayashi et al, NIFS 
•  Appearance of a faster n = 2 mode followed by non-linear toroidal coupling of 
two modes (phase alignment) 

Experimental observations:   
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High-frequency MHD after reconnection 

q  Low frequency MHD is always present during 
and after reconnection 

q  Chirping modes – evidence for fast ions 

q  Instabilities in Low Hybrid frequency 
range have also been observed during 
reconnection – one of possible causes 
of anomalous heating 
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Filament ejection in MAST 

q  Filamentary structures can be seen 
during merging compression in 
background-  subtracted optical 
images 

q  These are observed following spike 
in line-integrated density, implying 
radial ejection of plasma following 
reconnection 

q  Goals of reconnection studies: 
 - reconnection during m/c: 
astrophysics, diagnostics, theory 

 - IRE studies: scenario development 
 -  sawteeth: next step? 
 - ELMs: next step? 

4.9 ms 

5.0 ms 

5.1 ms 

minimum subtracted average subtracted 


