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Introduction 1  
The role of Magnetic reconnection	

438 CHAPTER 10. MAGNETIC RECONNECTION

Figure 10.21: Elaborate version of the standard 2D X-type reconnection model that also in-

cludes the slow and fast shocks in the outflow region, the upward-ejected plasmoid, and the

locations of the soft X-ray bright flare loops (Tsuneta 1997).

celerating particles in a downward direction and producing shock waves and plasmoid

ejection in an upward direction. Hirayama (1974) explains the preflare process as a

rising prominence above a neutral line (between oppositely directed open magnetic

field lines), which carries an electric current parallel to the neutral line and induces a

magnetic collapse on both sides of the current sheet after eruption of the prominence.

The magnetic collapse is accompanied by lateral inflow of plasma into the opposite

sides of the current sheets. The X-type reconnection region is assumed to be the loca-

tion of major magnetic energy dissipation, which heats the local coronal plasma and

accelerates nonthermal particles. These two processes produce thermal conduction

fronts and precipitating particles which both heat the chromospheric footpoints of the

newly reconnected field lines. As a result of this impulsive heating, chromospheric

plasma evaporates (or ablates) and fills the newly reconnected field lines with over-

dense heated plasma, which produces soft X-ray-emitting flare loops with temperatures

of MK and densities of cm . Once the flare loops

cool down by thermal conduction and radiative loss, they also become detectable in

EUV ( MK) and H ( K). Kopp & Pneuman (1976) re-

Tsuneta +, 1996 

Solar Flare	
Coronal heating, micro/nano-flare	

Dynamical corona is made by 
magnetic reconnection. 
 
However, when fast RX occurs is 
still not clear. 	



Introduction 2  
Collisionless Reconnection	
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Figure 15
MRX (Magnetic Reconnection Experiment) scaling; effective resistivity η∗(=E/j ) normalized by the Spitzer
value ηSP versus the ratio of the ion skin depth to the Sweet-Parker width is compared with numerical
calculation of the contributions of Hall effects to the reconnection electric field. The simulations were based
on a 2D two-fluid code. From Yamada et al. 2006.

of the ion skin depth to the Sweet-Parker layer thickness, δSP, was shown in Equation 6 to be
proportional to (λmfp/L)1/2, following Yamada et al. (2006).

In MRX the classical rate of reconnection with the Spitzer resistivity is obtained when the
resistivity is large enough to satisfy δi < δSP. When the ion skin depth becomes larger than δSP,
the reconnection layer thickness is expressed by 0.4 δi and the reconnection rate is larger than the
classical reconnection rate determined by Spitzer resistivity. Figure 15 presents an MRX scaling
for effective resistivity η∗ = ηeff /ηS, (ηeff ≡ E/j ) normalized by the Spitzer value ηS in the center
of the reconnection region. Because in resistive MHD, E is balanced by the Ohmic term in the
diffusion region, whereas in two-fluid MHD the Hall term is important as well, ηeff represents
the effective resistivity generated by two-fluid effects.

The MRX data set is compared with scaling obtained in a recent Hall MHD numerical simu-
lation using a two-fluid MHD code (Breslau & Jardin 2003). The horizontal axis represents the
ratio of the ion skin depth to the classical Sweet-Parker width δSP = L/S1/2, where L was set to be
20 cm, the system scale. Figure 15 experimentally confirms an important criterion for two-fluid
effects to come into play, namely, the reconnection resistivity (or reconnection speed) that takes off
from the classical Spitzer value (or the Sweet-Parker reconnection rate) when the ion skin depth
δi becomes larger than twice the Sweet-Parker width δSP.

The apparent agreement of MRX scaling with a two-fluid Hall MHD (with resistivity included)
code has an important implication. It indicates that anomalous resistivity is primarily accounted
for by the laminar Hall effect, when the Spitzer resistivity is not large enough to balance the
large reconnecting electric field in fast magnetic reconnection. Even with the presence of other
energy dissipation mechanisms, the reconnection electric field primarily can be represented by
the laminar Hall effect, namely, jHall × B term, and this is consistent with the MRX data shown
in Figure 15.
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Figure 4
Sketch of magnetic field geometry in collisionless reconnection. The ions decouple from the electrons at a distance δi ≡ c /ωpi from the
neutral line. The electrons continue flowing inward and the field is reconnected within the much thinner electron diffusion layer.

2.4. Collisionless Reconnection
Up to now, we have used the resistive MHD form of Ohm’s Law, given by Equation 1 with v, fluid
velocity. The meaning of Ohm’s Law is that in a steady state, the Lorentz force on the electrons
is balanced by frictional drag due to collisions. Thus, v is understood to be the electron velocity
ve. Using the relation J ≡ (vi − ve )ene (valid for singly charged ions in a quasineutral plasma) and
assuming v ∼ vi, Ohm’s Law can be written in a form that accounts for ve $= vi :

E + v × B
c

− J × B
ene c

= J
σ

. (4)

The J × B term in Equation 4 represents the Hall effect. When the Hall term dominates,
the in-plane electron flow into and out of the reconnection region corresponds to an in-plane
current. This differs from the Sweet-Parker and Petschek models, in which the current is entirely
perpendicular to the reconnection plane. The situation is sketched in Figure 4.

Consider the out-of-plane ( ŷ) component of Equation 4 near the magnetic X-point. It can be
shown that the ion velocity vi ∼ v approaches zero on scales below the so-called ion inertial length
or ion skin depth δi (see Table 1 and Equation 8). One can think of δi as the gyroradius of an ion
moving at the Alfvén speed: δi = vA/ωc i . On scales δ < δi, E is supported by the Hall term or the
resistive term (electron pressure can also play a role, but we ignore that for the time being).

The out-of-plane component of the Hall term can be written in terms of Ampere’s Law as
(

J × B
ene c

)

y
= B · ∇By

4πene
. (5)

Equation 5 shows that the in-plane current generates an out-of-plane field, By. We can derive the
spatial form of By from the behavior of Jx and Jz near the X-point. Because Jx represents electron
inflow and Jz represents electron outflow, Jx ∝ x and Jz ∝ −z. From Ampere’s Law, By ∝ xz, that
is, the out-of-plane field has a quadrupole pattern.

When do we expect the Hall effect to be important in reconnection? Recall that in MHD
reconnection, the electric field is inductive outside the reconnection region and resistive within
it. Because the Hall effect takes place on scales less than δi, we expect Hall reconnection when
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Yamada +, 2006 

Current sheet thickness 
< ion inertia length 

Collisionless (Hall) RX  

à Fast RX 

Laboratory Plasma 

Relationship large & small scale? 



Typical scale = 10^5 km	
almost same	

Macro-scale　→　Sun：105　km　Earth：105 km   same 
Micro-scale    →　Sun：10-3km　 Earth：103 km　6 order 
Macro/Micro　→   Sun：108　     Earth：102 　　　 6 order　 

Solar corona (flare)	 Earth’s magnetosphere (substorm)	

Macro/Micro is largely different!	

Introduction 3  
Solar Corona and Earth’s Magnetosphere	

Typical scale = 10^5 km	



Marginally Collisionless Plasma	

Uzdensky 2007 proposed a self-regulating 
process keeping the plasma marginally 
collisionless in solar corona.  

No. 1, 2008 HOW RECONNECTION REGULATES CORONAL CONDITIONS L71

Fig. 1.—Sweet-Parker current layer thickness vs. ion inertial lengthdSP

for the stars in the sample. The dashed line displays their predictedd p c/qi pi

equality. Boxes denote F, G, and K stars; diamonds denote M dwarfs. The
asterisk at cm and the plus sign at cm denote values basedd ∼ 200 d ∼ 40i i

on average and EM values for eruptive and compact solar flares, respectivelytd

(Priest & Forbes 2000).

Fig. 2.—Decay time vs. emission measure EM for the stars in the sample.td

The dashed line shows the prediction of the theory. Boxes denote F, G, and
K stars; diamonds denote M dwarfs. Ranges for eruptive and compact solar
flares (Priest & Forbes 2000) are shown by the gray boxes.

, consistent with the Haisch model. Finally, we use1/2A ∼ L/10
T to calculate the Spitzer resistivity (Spitzer & Härm 1953)

2! 3/216 pe ln L meh p , (4)( )3m 2k Te B

where is the electron mass andm ln L pe

is the Coulomb logarithm. Use of this3 3 3 1/2ln [(3/2e )(k T /pn) ]B

formula is justified because the electron mean free path
( km for solar conditions, where is thel ∼ v /n ∼ 25 vmfp,e eith,e th,e

electron thermal speed and is the electron-ion collision fre-nei

quency) is small compared to length scales in the outflow di-
rection ( km) and along the current sheet (4 5L ∼ 10 L ∼ 10SP

km).
The result of comparing to using the stellar flare datad dSP i

is plotted in Figure 1. In addition, representative solar values
based on s and cm!3 for eruptive flares4.5 49.5t p 10 EM p 10d

( cm and cm) and s and3d ∼ 110 d ∼ 200 t p 10 EM pSP i d

cm!3 for compact flares ( cm and cm) are4810 d ∼ 44 d ∼ 35SP i

plotted as the asterisk and plus sign, respectively. A dashed
line with slope of unity is plotted. The agreement is extremely
good. A least-squares analysis gives a best-fit slope of

with a correlation coefficient of 0.981.0.98 ! 0.02
It is encouraging that the slope of the line in Figure 1 is

consistent with unity. However, there are ambiguities in the
data analysis. For example, we used as the critical lengthdi

scale, whereas is more applicable to the corona (but morers

difficult to estimate). These scales differ by a factor of ,1/2btot

where is the ratio of gas pressure to total magnetic pressure.btot

If in the corona, this introduces a factor of a few.b ∼ 0.1tot

The present analysis does not intend to distinguish between the
two gyroradii; rather, the results demonstrate that is withindSP

a factor of a few of the critical length scale in active stellarri

coronae.
A caveat of the result in Figure 1 pertains to how the param-

eters are derived in the Haisch model. Using equations (1), (2),
and (4), using , and eliminating B by defining theL ∼ L/10SP

ratio of gas pressure to magnetic pressure in the reconnecting
magnetic field as , we find2 2b p 2nk T/(B /8p) (d /d ) ∼rec B SP i

. Treating as a fixed4 2 1/2 2(e ln L/15k )(2pm b /m ) (nL/T ) bB e rec i rec

parameter and eliminating , , and using equation (3) givesT n L

2 1/8d a a tSP n L d!∼ a ln L b , (5)rec( ) ( )2d a EMi T

where is a4 2 1/2 !8 2 2a p (e /15k )(2pm /m ) p 1.09 # 10 cm KB e i

constant. The slow dependence on significantly sup-t /EMd

presses scatter in the observational data when evaluating
. However, the magnitude of is unconstrained byd /d d /dSP i SP i

the Haisch model, so the slope of the line in Figure 1 being
of order unity is significant. Furthermore, since the data obtained
using the Haisch model agree with independent determinations
of the same quantities from other studies (Mullan et al. 2006),
it is reasonable to assert that data obtained independently from
the Haisch model would fall close to the same line.

We can avoid suppression of the scatter in the data by solving
equation (5) for and taking a logarithm of both sides. Thistd

yields , wherelog (t ) p log (EM) " C C p 16 log (d /d ) !d SP i

using a value of , which is represen-4 log b ! 47 ln L ∼ 22rec

tative of the stellar data in our study. If , this predictsd ∼ dSP i

a linear relationship between and , with Clog (t ) log (EM)d

being the y-intercept. The stellar data are plotted in Figure 2.
The gray boxes show the range of values for eruptive and
compact flares on the Sun (Priest & Forbes 2000). Assuming

and taking to be of order unity, the predicted lined ∼ d bSP i rec

is plotted. While the data do not fall on a line, the line predicted
by the hypothesis that does pass through the data. Tod ∼ dSP i

see why this is significant, note that if was, say, (atd 100dSP i

1–10 m, still a very small length scale compared to coronal
loop radii), then C would be !15 instead of !47 and the line
in Figure 2 would lie 32 units higher, orders of magnitude

Cassak+ 2008 also 
discussed self-regulating 
process and found the 
observational implication 
from 107 flares (Sun-like 
star). 



Today’s Talk	

Basically, we discuss coronal heating problem along 
nano-flare heating model. 

Method: 1D Hydrodynamic calculation which is 
popular in the category of solar physics 

New points: Include the regime transition from 
collisional to collisionless reconnection. 

Aim: To understand what’s happened in a large scale 
coronal loop with the transition and its feed back.  

Main difference from past studies: The plasma 
actively decides its heating rate.  



1D Hydrodynamic Calculation 	
CANS 1D HD 
Modified Lax- Wendroff 
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tion heating. In §2 we describe the basic model. In §3 we discuss the nature of the equilibrium
solutions. In §4 we present three representative coronal loop models with different ampli-
tudes of the collisionless heating rate. We find stable equilibrium states for low amplitudes
and periodic oscillations at higher amplitudes. We also present a parameter study which
shows trends in various quantities with heating rate amplitude. Section 5 is a summary and
discussion.

2. Model

2.1. Basic Equations

We consider a single magnetic loop with an arch-like configuration. The loop has a
fixed semi circular shape with a constant cross section, with half-length L = 26 Mm. The
loop is taken to have an infinitely strong magnetic field, so that the plasma moves and the
heat flows freely along the loop while energy and mass transport across loop are strongly
inhibited. Assuming symmetry about the loop top and a fully ionized atmosphere, we
calculate the dynamics in only half of the loop using a 1D-HD code. For simplicity, the ions
consist of only protons, though other elements are included in evaluating radiative losses.
We use a single-fluid description, i.e., electrons and ions have the same temperatures and
bulk velocities.

The equations of mass, momentum, and energy conservation in Eulerian form are

∂ρ

∂t
+

∂

∂x
(ρVx) = 0, (1)

∂

∂t
(ρVx) +

∂

∂x

(
ρV 2

x + p
)

= −ρg‖, (2)

∂

∂t

(
p

γ − 1
+

1

2
ρV 2

x

)
+

∂

∂x

[(
γ

γ − 1
p +

1

2
ρV 2

x

)
Vx − κ‖

∂T

∂x

]
= −ρg‖Vx + H − R, (3)

p =
kB

m
ρT, (4)

g‖ = g0 cos [(π/2) x/L] (5)

in cgs units. Here x is the distance along a loop from its base, ρ is the proton mass density,
m is the mean mass per particle (= mp/2), v is the fluid velocity, p is the total gas pressure,
T is the plasma temperature, g‖ is the solar gravity along the loop, g0 is the gravity at the
solar surface (2.74 × 104 cm s−2, kB is Boltzmann’s constant, and γ is the ratio of specific
heats for an ideal gas, taken to be 5/3.
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HYDRODYNAMIC MODELING OF SOLAR FLARE LOOPS 427

FIG. 1.ÈSchematic pictures of the CSHKP-type reconnection model for Ñares. As magnetic reconnection proceeds, open coronal magnetic Ðeld lines
reconnect to close and accumulate on the lower-lying closed loops. As the X-point (or line), where reconnection occurs, re-forms at higher altitude, the height
of the closed loops increases. The total energy release rate and duration are determined by the reconnection rate and magnetic conÐgurations. The pair of
small hatched regions in each closed loop represent the heat conduction front, which descends toward the lower corona.

circular shape with a constant cross section. The half-length
of the ith loop, increases linearly with i :L

i
, L

1
\ 2 ] 104

km for the innermost loop (loop 1), and kmL
9
\ 3 ] 104

for the outermost (loop 9). The width of each loop is set to
be 800 km, so that there are no gaps or overlap between the
neighboring loops. Each loop is taken to have an inÐnitely
strong magnetic Ðeld, so that the plasma moves and the
heat Ñows freely along each loop while energy and mass
transport across loops is strongly inhibited. Although sim-
pliÐed, these assumptions are reasonable if the surrounding
magnetic pressure is everywhere much stronger than the gas
pressure inside each loop during Ñares. Assuming symmetry
about the loop top and a fully ionized atmosphere for tem-
peratures higher than 4 ] 104 K, we calculate the dynamics
in only half of each loop individually using a 1D-HD code.
For simplicity, the ions consist of only protons, though
other elements are included in evaluating radiative losses.
We use a single-Ñuid description, i.e., electrons and ions
have the same temperatures and bulk velocities. This is
correct when the collision time for momentum exchange
between electrons and protons is very much shorter than
the hydrodynamic timescale, 10È100 s (see Table 1 in

& CanÐeld Plasma viscosity is ignoredMcClymont 1983).
in all our calculations (for e†ects of the plasma viscosity, see

& RealePeres 1993a).

FIG. 2.ÈMultiple-loop conÐguration in our pseudo-2D model. We use
nine loops, with half-length L ranging from 2 ] 104 to 3 ] 104 km.

The equations of mass, momentum, and energy conserva-
tion in Eulerian form are

Lo
Lt

]
L
Ls

(ov) \ 0 , (1)

L
Lt

(ov) ]
L
Ls

(ov2) \ [og
A

[
LP
Ls

, (2)

LE
Lt

]
L
Ls

[(E] P)v]] og
A

v\
L
Ls
A
i

A

LT
Ls
B

[ R] H , (3)

where

P\ nk
B
T , E\

1
2

ov2]
P

c[ 1
, (4)

in cgs units. Here s is the distance along a loop from its base,
o is the total mass density, is the total particlen \ n

e
] n

pnumber density and are the electron and proton(n
e

n
pnumber density, respectively ; is assumed ton

e
\ n

p
\o/m

satisfy plasma neutrality, where m is the proton mass), v is
the Ñuid velocity, P is the total gas pressure, E is the sum of
the kinetic energy and the internal energy per unit volume,
T is the plasma temperature, is the acceleration of solarg

Agravity along the loop, is the Boltzmann constant, and ck
Bis the ratio of speciÐc heats for a monatomic ideal gas, taken

to be 5/3. Heat conduction along the loop is primarily by
electrons, and the classical conductivity for a fully ionized
hydrogen plasma is used :(Spitzer 1962)

i
A

\ i
0
T 5@2 , (5)

where is 9 ] 10~7 in cgs units. R is the radiative lossi
0rate ; for plasmas with T [ 4 ] 104 K (above the lower

transition region), it is given by

R(s, t) \ n
e
n
p
Q(T ) \ 1

4
n2Q(T ) , (6)

where Q(T ) is the radiative loss function for an optically
thin plasma. We used an analytic approximation,
Q(T ) \ sT a, with the temperature variation given by the
piecewise constants s(T ) and a(T ) listed in Table 1 (Hildner

Half loop length 26 Mm	

Heating 
e.g., micro/nano-flare	

Thermal conduction	

Radiative  
cooling	

gravity	



New point：Heating term by RX	
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Fig. 2.— Current sheet distribution and Heating rates; a) schematic illustration of current
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thickness, c) heating rate as a function of density.
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where λρ(ρ), Λ(T ) represent the effect of optical thickness on the efficiency of radiative cooling
and the radiative energy loss function, respectively. We take λρ(ρ) = ρcl/ρ tanh(ρ/ρcl),
and ρcl = m × 1012 g cm−3 (m: the mean mass per particle). Thus, radiative cooling is
strongly suppressed below the transition region, where the atmosphere is optically thick.
Our treatment is obviously approximate, but spares us the complexity of the full radiative
transfer problem for the lower atmosphere. Likewise, in the interests of simplicity, we use
an analytical expression for Λ

Λ(T ) = Λ010Θ(T ), (8)

where θ ≡ log10(T/Tcl), and

Θ(θ) = 0.4θ − 3 + 6/(exp(1.5θ + 0.08)) + exp(−2(θ + 0.08))), (9)

with Tcl taken to be 2 × 105 K. Figure 1 shows the radiative loss function of our formula
(solid line) and calculated from the CHIANTI atomic database (dashed line). For coronal
plasma, our formula well reproduces the radiative loss function calculated by CHIANTI. The
radiative loss function is underestimated below the transition region (T < 105 K). Our study
is insensitive to this discrepancy, because of our assumption that radiative cooling does not
work below the transition region due to optical thickness.

The energy input rate per unit volume is H, and we divide it into three parts,

H(n, T ) = H1(n) + H2(n, T ) + H3(n, T ) (10)

where H1, H2, H3 represent respectively heating by collisionless reconnection, collisional
Sweet-Parker reconnection heating, and heating by an unspecified mechanism to maintain
the photosphere and chromosphere. These heating function will be discussed in the next
section.

The calculations described in this paper were performed using the 1D version of the
numerical package CANS (Coordinated Astronomical Numerical Software) maintained by
Yokoyama et al1. In our calculation, we used 2001 grid points in x. Grid spacing below
the transition region is set to be 0.01 h0(x < 1.3xtr), where h0, xtr are the pressure scale
height in the chromosphere (h0 = 200 km) and the transition region location (xtr = 2500
km), respectively. In the corona, we use ∆xi+1 = 1.02∆xi(x > 1.3xtr). We use reflecting
boundary conditions at x=0 and L; ∂ρ/∂x = 0, ∂p/∂x = 0, Vx = 0. We impose an upper
limit on ∆x of 0.5 h0. Timestepping is explicit, and set by the CFL condition.

1CANS (Coordinated Astronomical Numerical Software) is available online at http://www-space.eps.s.u-
tokyo.ac.jp/ yokoyama/etc/cans/.
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cause strong heating. We can derive the heating rate by collisionless reconnection as follows;

H1(δi) = Ė

∫ δi

0

fdδ = Hc1

(
δi

δc
+

λ

δc
log

(
cosh

(
δi−δc

λ

)

cosh
(

δc
λ

)
))

, (12)

where Ė, Hc1 are the energy release rate by fast reconnection in each current sheet, and
the heating rate parameter (= Ėf0δc/2), respectively. Figure 2c shows the heating rate
as a function of density in the three cases (Hc1 = 3 × 10−2 − 10−4 erg cm−3 s−1). As a
“reality check” of this parameter range, we define an effective magnetic dissipation time τdiss

by H1 = B2/(8πτdiss) = 400(B/100G)2/τdiss erg cm−3 s−1. We then see that the shortest
dissipation time τdiss shown in Figure 2c is about 400s for a 100G magnetic field, and occurs
for Hcl = 3× 10−2 erg cm−3 s−1 and n = 108 cm−3. However, in later section (§4.3) we show
that the loop density never falls below 109 cm−3, corresponding to τdiss an order of magnitude
larger. We conclude that this range of parameters is reasonable for average magnetic loops
in the solar corona. However, in §4.5 (Parameter survey) we show that much larger heating
rates can be achieved if Hcl is as large as 3 × 10−1 erg cm−3 s−1. Such a large heating rate
demands rapid dissipation of the free energy of a very large background field which is highly
stressed, which may not be commonly achievable. But we think it is useful when we apply
our model to other astrophysical conditions.

2.2.2. Coronal heating model in the collisional regime

For collisional heating, we assume that Sweet-Parker reconnection is the dominant heat-
ing mechanism. The energy release rate in Sweet-Parker reconnection is proportional to
VAS−1/2 in the case of constant magnetic field. The Spitzer resistivity η ∝ T−3/2. Thus we
assume the heating rate in the collisional regime can be written as

H2(T ) = Hc2 ×
(

T

Tc

)− 3
4
(

ρ

ρc

)− 1
4

, (13)

where Hc2, Tc, ρc are the parameters for collisional heating, which we take to be 1.0 × 10−5

erg cm−3 s−1, 2 MK, and m × 109 g cm−3, respectively.

2.2.3. Chromospheric and lower transition region heating

Generally, the heating of the chromosphere to lower transition region is believed to be
larger than that of the corona, because of their high density condition. These regions have
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an important role in our study as the mass reservoir or energy consumer of the excess energy
in the corona. Therefore, to produce a robust chromosphere and lower transition region we
assume an unspecified heating mechanism of the form

H3(ρ, T ) =
Hc3

2

ρ

ρ0

(
T

T0

)− 3
4
(

1 + tanh

((
ρ

ρcl
− 1

)
/λ3

))
, (14)

where Hc3 , ρ0, T0 are the heating rate coefficient (6 × 104 erg cm−3 s−1), mass density
(m × 1017 g cm−3), and chromospheric reference temperature (104 K). The parameters ρcl,
λ3 are taken to be 1010 and 0.1; this reduces H3 nearly to zero in the corona, as desired.

3. Equilibrium

Static solutions of Equation (3) satisfy the thermal equilibrium condition

d

dx
κ‖

dT

dx
= R − H. (15)

Approximating the conductive term by κ‖T/L2, we can estimate the relative importance of
conduction and radiation in cooling the loop by computing the Field length Lf , the value of
L for which these terms are equal

Lf ≡
(

κ‖T

R

)1/2

= 9.5 × 109

(
T 7/2

6

n2
9Λ−23

)1/2

cm, (16)

where for any quantity q the notation qa means q/10a. For typical quiet solar corona pa-
rameters (T6 ∼ 2, n9 ∼ 1), Lf well exceeds our chosen loop half-length 2.6 Mm. Thus, we
expect the loop to be cooled primarily by thermal conduction rather than radiation, a point
first emphasized by Rosner et al. (1978).

Since L < Lf , we would expect conduction to play an important role in stabilizing the
loop. According to the classical analysis of Field (1965), in the absence of conduction both
the radiative loss and collisionless heating functions should destabilize the medium to quasi-
isobaric perturbations, those for which δn/n ∼ −δT/T . A positive temperature fluctuation
δT is accompanied by a negative density fluctuation δn, which increases the heating rate (see
Equation 12) and lowers the cooling rate, enabling the perturbation to grow. However, since
L/Lf % 1, any perturbation which satisfies periodic boundary conditions and is symmetric
about the loop top should be strongly damped by conduction. Instead, we will see that
conduction is destabilizing, because it drives mass exchange with the lower atmosphere.

Collisionless RX	

Collisional heating (Sweet-Parker RX)	

Unknown heating to produce robust chromosphere	
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Fig. 2.— Current sheet distribution and Heating rates; a) schematic illustration of current
sheet inside the coronal loop, b) current sheet distribution as a function of current sheet
thickness, c) heating rate as a function of density.
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Weak heating: Usual corona	
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Fig. 2.— Current sheet distribution and Heating rates; a) schematic illustration of current
sheet inside the coronal loop, b) current sheet distribution as a function of current sheet
thickness, c) heating rate as a function of density.
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Fig. 4.— Time series of temperature, density, velocity, heating rate, and radiative cooling &
thermal conduction in the case of micro/nano-flaring coronal loop (Hcl = 3× 10−3 erg cm−3

s−1). In the third row of panels (Velocity), the dotted lines show 0 km s−1 to distinguish
positive and negative flows. The line styles for the heating rates are the same as in Figure
3d. In the bottom row of panels, the solid line represents radiative cooling, the dashed line is
conductive cooling, and the dotted line conductive heating. The sharpest features conductive
heating rates are underresolved.
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Fig. 12.— Characteristics of our model as a function of collision less heating coefficient.
Crosses, squares, and diamonds show the maximum, mean, and minimum values, respec-
tively.
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Conclusion	

•  We studied coronal loop hydrodynamics 
including the regime transition from 
collisional to collisionless RX. 

•  We found two regime of behavior;         
small amplitude heating à steady              
large amplitude heating à cyclic 

•  On average the density of the loop system is 
close to the marginally collisionless value.	

Submitted to ApJ, “Self-organization of Reconnecting  
Plasmas to a Marginally Collisionless State”	



Future work	

•  Comparison with Observation 
　  Warm loop (1MK) à cooling stage of cycle 
     Hot loop (>2MK)   à steady state 
　　Before flare           à faint loop 
　　                             à downflow (~10 km/s) 
•  Modeling            
     time dependent current sheet distribution 
     time dependent ionization 


