Magnetic reconnection in solar atmosphere

Hiroaki Isobe (Kyoto University)

- Reconnection in the corona
- Reconnection in the lower atmosphere

MR2012 May 24, Princeton

Observational evidence for magnetic reconnection in the corona (before Hinode/SDO)

Cusp-shaped loop (Tsuneta+92)

Loop-top Hard X-Ray source (Masuda+94)

Reconnection inflow (Yokoyama+01; Narukage & Shibata06 Lin+05, Hara+06) V_{inflow}~0.01V_A

Supra-arcade downflow (McKenzie Hudson99, Innes+03, Asai+04, Savage+12)

Measurement of reconnection rate

Isobe+02, 05 Qiu+02, 04 Jing+05 Asai+02,04

- V_{inflow}: 1 100 km/s ~ 0.001-0.1 V_A * spatial/temporal average
- E = V_{inflow} x B ~ 10—1000 V/m
- $eEL \sim 1-100 \text{ GeV} \dots$ comparable to highest energy ions

Reconnection in quiet Sun

Yohkoh/SXT

- Associated with prominence eruption.
- Invisible in SXR/HXR light curves
- Can geo-effective (McAllister+94)

Motion of individual flare kernels

All TRACE UV footpoints on flore at 07:01:31

Fletcher+04

Hinode/SOT/CaH 2012 Mar 5

Spectroscopic diagnostics by Hinode/EIS

Hara et al. 2011

Spectroscopic diagnostics by Hinode/EIS

"Standard model" confirmed qualitatively. More examples desired to examine the role of shocks.

Hara et al. 2011

Ji & Daughton 2011

Plasmoid ejection

CTS/SEC/SC

Ohyama & Shibata 97

 Plasmoid ejection and hard X-ray emission (electron acceleration) well correlated. (Asai+04, Nishizuka+10)

- "Lightening"-like reconnection event observed by SDO/AIA
- Formation, coalescence and ejection of multiple plasma blobs

Takasao+12, ApJ

Diagnostics of non-MHD effects

(kinetic scales (< 1m) are too small to resolve, but...)

Time-dependent ionization (modeling by Imada+ 11)

Ion temperature of AR (EIS obsrevation by Imada+ 09)

- What remains:
 - Scale coupling: observational resolution (~1" ~ 700km) still far from kinetic scales (~1m)
 - Role of plasmoids and slow shocks in energy conversion
 - particle acceleration
- Hopes in future
 - More date from Hinode and SDO
 - EUV spectrometer on Solar-C with much better capability of plasma diagnostics and spetial/temporal resolution

Reconnection in lower chromosphere

Cancellation of magnetic elements (e.g. Martin+85, Chifor+08)

BP 3(z=0.1)

Ellerman bombs (reconnection between two neighbouring emerging loops) Pariat+04, Isobe+07

(d)

BP 1(z=0)

BP 2(z=0)

Surges (chromospheric jets) Liu & Kurokawa 05

Chromosphere is collisional and partially ionized

• One-fluid MHD is still good for large scale dynamics

$$v_{ni}\rho_n \left(V_n - V_i\right) \approx \frac{J \times B}{c}$$
$$V_n - V_i \approx \frac{B^2}{4\pi L v_{ni}\rho_n} \approx 100 \left(\frac{V_A}{10 \text{ km/s}}\right)^2 \left(\frac{L}{100 \text{ km}}\right)^{-1} \left(\frac{v_{ni}}{10^3 \text{ Hz}}\right)^{-1} \text{ cm/s}$$

Neutral effects

Ambipolar/Hall is important in small scale

$$V_n \times B < \frac{(J \times B) \times B}{c v_{ni} \rho_n} \implies L < \frac{V_{An} \rho_n}{v_{in} \rho_i} \approx 1 - 10 km$$

Ambipolar/Hall = $\omega ci/\nu in$ ωci : Ion-cyclotron freq $\propto B$

 $\mathcal{V}in$: Ion-neutral collision freq $\propto n$

Photosphere: Hall dominant Chromosphere: Ambipolar dominant

Ubiquitous chromospheric jets

Hinode/SOT

Reconnection between small emerging loop and ambient field (Shibata+07)

 10^2 km

Reconnection of interlocked-comb structure = strong guide field Katsukawa+07

Jets from sunspot light bridge (Shimizu 11) G-band: 8:58:00 Vector (Bx, By) on Bz Jz CallH: 8:56:55

Hinode/SOT CaH

Multiple plasmoids in chromospheric reconnection??

Size ~ a few hundred km Velocisty ~ 10—50 km/s

Singh et al. submitted.

Singh et al. submitted.

Effect of non-uniform ambipolar diffusion (Isobe+ in prep. See also Leake's talk for multi-fluid approach)

- 2D MHD simulation with uniform resistivity and non-uniform ambipolar diffusion
- No Hall effect, no guide field

color: current density

Ambipolar diffusion $\neq 0$

Ambipolar diffusion localized in x < ±20 Ohmic resistivity is uniform

Petschek-like regime

color: current density

Ambipolar diffusion uniform + enhanced in $x < \pm 2$ Uniform resistivity

Even though the resistivity is uniform, the localization of ambipolar diffusion causes local thinning of the current sheet, leading 10⁻² to Petschek-like fast reconnection

The "ambipolar layer" almost disappears.

Summary

- Reconnection in corona
 - "Standard model" confirmed
 - Many plasmoids, coalescence, ejection
 - Role of slow shocks still unclear (observationally)
 - Kinetic effects being inferred by EUV spectroscopy
- Reconnection in the lower atmosphere
 - partially ionized and collisional
 - Multile-plasmoid ejections found
 - Neutral effects important
 - Observation by ALMA may get close to diffusion scale (~10km) of chromospheric reconnection!