Survey of Astrophysical Plasma Conditions for Magnetic Reconnection and a Phase Diagram

> Hantao Ji CMSO & PPPL

Contributors: W. Daughton, M. Yamada, S. Prager + many others

May 25, 2012 MR2012 Princeton

Fundamental Reconnection Problems

- How is reconnection rate determined? (*The rate problem*)
- How does reconnection take place in 3D? (*The 3D problem*)
- How does reconnection start? (*The onset problem*)
- How are particles energized? (*The energy problem*)
- How do boundary conditions affect reconnection process? (*The boundary condition problem*)
- How does reconnection take place in relativistic and strongly magnetized plasmas? (*The relativity problem*)
- How to apply local reconnection physics to a large system? (*The scaling* problem)

A Reconnection "Phase Diagram" Ji & Daughton (2011)

A Hierarchy Model of Islands

 $S_1 = (L_1/\delta_1)^2$ Hierarchy of islands: $2L_1$ $N_1, N_2, N_3, \dots, N_i$ Ist Level δ_1 $S_1, S_2, S_3, \dots, S_i$ N_1 – islands $\delta_1, \delta_2, \delta_3, \dots, \delta_i$ Assume $S_2 = (L_2/\delta_2)^2$ $N_j = \left(\frac{S_j}{S}\right)^{\alpha}$ $2L_2 = 2L_1/N_1$ 2nd Level $\delta_2 \delta_2$ \bigcirc N_2 – islands then 3rd Level $\delta_{j} = \frac{\delta_{j-1}}{\sqrt{N_{j-1}}} = \dots = \frac{\delta_{1}}{\sqrt{N_{j-1}N_{j-2}\dots N_{1}}} = \rho_{s}$ $\Rightarrow S = \frac{\sqrt{S_c}}{2}\lambda$ 4

All Phases Are Fast – But Different Physics Which Should Lead to Different Heating/Acceleration?

6

Location	Plasma	Size (m)	$T_e ({ m eV})$	$n_e (\mathrm{m}^{-3})$	B_T (Tesla)	S	λ	Notes
Lab	MRX ⁷⁵	0.8	10	1×10^{19}	0.1	3×10^3	$1.5 imes 10^2$	$\epsilon = 1/4, T_i = T_e/2, B_R = 0.3B_T$
	VTF ¹⁴	0.4	25	1.5×10^{18}	0.044	3×10^2	4×10^{0}	$\epsilon = 1/4, T_i = 5 \text{ eV}, \text{Ar}^+$
	Laser plasma ⁷⁶	2×10^{-4}	10^{3}	5×10^{25}	100	2×10^1	1×10^{1}	$Al^{+13}, B_R = B_T$
	MST ⁷⁷	1.0	$1.3 imes 10^3$	9×10^{18}	0.5	3×10^{6}	$6.2 imes 10^1$	$T_i = 350 \text{ eV}, \text{D}^+, B_R = 0.05 B_T$
	TFTR ⁷⁸	0.9	$1.3 imes 10^4$	1×10^{20}	5.6	1×10^8	2.3×10^2	$T_i = 36 \text{ keV}, D^+, B_R = 0.01 B_T$
	ITER ⁷⁹	4	2×10^4	1×10^{20}	5.3	6×10^8	5×10^2	$D^+, B_R = 0.01 B_T$
	NGRX ⁸⁰	1.6	25	1×10^{19}	0.5	1×10^5	1×10^3	$\epsilon = 1/4, T_i = T_e/2, B_R = 0.3B_T$
Solar	Magnetopause ⁸¹	6×10^7	300	1×10^7	5×10^{-8}	6×10^{13}	9×10^2	$B_R = B_T$ (p. 267)
system	Magnetotail ⁸¹	6×10^8	600	3×10^5	2×10^{-8}	$4 imes 10^{15}$	1.3×10^3	$B_R = B_T, T_i = 4.2 \text{ keV} (p. 233)$
·	Solar wind ⁸¹	2×10^{10}	10	7×10^{6}	$7 imes 10^{-9}$	$3 imes 10^{12}$	2×10^5	(p. 92)
	Solar corona ⁸¹	1×10^7	200	1×10^{15}	2×10^{-2}	1×10^{13}	4×10^7	(p. 79)
	Solar chromosphere ⁸²	1×10^7	0.5	1×10^{17}	2×10^{-2}	1×10^8	3×10^8	Neutral particle effects are weak ⁸²
	Solar tachocline ^{83,84}	1×10^7	200	1×10^{29}	1	1×10^9	5×10^{10}	
Galaxy	Protostellar disks ⁸⁵	9×10^9	3×10^{-2}	6×10^8	2×10^{-5}	8×10^3	1×10^9	L = 2h(R = 1AU), e-n collisions included, ⁸² Mg ⁺
	X-ray binary disks ^{86,87}	4×10^4	75	1×10^{27}	36	3×10^7	$9 imes 10^8$	$M = 10M_{\odot}, L = 2h(R = 10^2 R_S),$ $\alpha = 10^{-2}, \dot{M} = 10^{16} g/s$
	X-ray binary disk coronae ⁸⁸	3×10^4	5×10^5	1×10^{24}	1×10^4	1×10^{16}	9×10^7	$M = 10M_{\odot}, R = R_S, T_i = (m_p/m_e)T_e,$ $\eta_{Compton} \text{ included (Ref. 88)}$
	Crab nebula flares ^{89–91}	1×10^{14}	130	10^{6}	10^{-7}	$5 imes 10^{20}$	2×10^{11}	Pair plasma, T from $B_R^2/2\mu_0 = 2nT$
	Gamma ray bursts ⁹²	10^{4}	3×10^5	2×10^{35}	4×10^9	$6 imes 10^{17}$	2×10^{16}	Pair plasma
	Magnetar flares ^{92,93}	10^{4}	5×10^5	10^{41}	2×10^{11}	$6 imes 10^{16}$	$5 imes 10^{17}$	Pair plasma, SGR 1806-20
	Sgr A* flares ^{94,95}	2×10^{11}	7×10^{6}	10^{13}	10^{-3}	2×10^{24}	5×10^8	$L = 2R = 20R_S$
	Molecular clouds ^{96,97}	$3 imes 10^{16}$	10^{-3}	10 ⁹	2×10^{-9}	1×10^{11}	7×10^{12}	Neutral particle effects included, ⁸² HCO ⁺
	Interstellar media ^{96,97}	5×10^{19}	1	10^{5}	5×10^{-10}	2×10^{20}	1×10^{14}	L = magnetic field scale height
Extra- galactic	AGN disks ^{86,87,98}	2×10^{11}	24	8×10^{23}	0.5	2×10^{13}	1×10^{14}	$M = 10^8 M_{\odot}, L = 2h(R = 10^2 R_S),$ $\alpha = 10^{-2}, \dot{M} = 10^{26} g/s$
	AGN disk coronae ⁸⁸	$3 imes 10^{11}$	$5 imes 10^5$	1×10^{17}	4	10 ²³	$3 imes 10^{11}$	$M = 10^8 M_{\odot}, R = R_S, T_i = (m_p/m_e)T_e,$ $\eta_{Compton} \text{ included (Ref. 88)}$
	Radio lobes ⁶⁹	3×10^{19}	100	1	5×10^{-10}	2×10^{25}	8×10^{12}	Compton ()
	Extragalactic jets ⁹⁹	3×10^{19}	10 ⁴	3×10^{1}	10 ⁻⁷	6×10^{29}	1×10^{14}	3C 303 7
	Galaxy clusters ¹⁰⁰	6×10^{18}	5×10^3	4×10^4	2×10^{-9}	2×10^{25}	6×10^{11}	A1835

Solar Corona Example

L	1E+7 (m)	
L_cs	5E+5 (m)	$V_R = \frac{\eta}{\mu_0 \rho_s} \sim 1 \text{ m/s} \sim 10^{-6} V_A$
Т	200 (eV)	
Ν	1.0E+15 (m^-3)	Field line breaking
B_guide	200 G	due to collisionless
B_rec	20 G	
S	1.1E+13	Purely collisionless
Q_s	0.28 (m)	MHD+collisionless?
λ	3.6E+07	8

Crab Nebula Flare

L	1E+14 (m)
L_cs	5E+13 (m)
Т	130 (eV)
Ν	1.0E+6 (m^-3)
B_guide	1E-4 G
B_rec	1E-3 G
S	5E+20
Q_s	530 (m)
λ	2E+11

Pair plasma

Assume thermal plasma

$$2nT \sim \frac{B_{rec}}{2\mu_0}$$

Purely collisionless process or need MHD+collisionless?

Design Goals for MRX-U

Current Sheet Length ~ System Size / 4

2L=16 cm

Ъ,

Conceptual Designs Are Nearly Complete

Parameters	MRX	MRX-U
Device diameter	1.5 m	3 m
Device length	2 m	4 m
Flux core diameter	0.75 m	1.5 m
Stored energy	~100 kJ	~3 MJ
Plasma heating	No	OH (~1MW)

Geometry & Boundary Conditions for Fully Kinetic Simulations

Include Fokker-Planck collision operator

Reconnection of Sectored Magnetic Fields?

Heliospheric current sheet

- A phase diagram in term of Lundquist number (S) and effective size (λ) has been developed to summarize current understanding of magnetic reconnection involving different dynamic processes.
- A survey of plasma parameters was done for a large number of plasmas where magnetic reconnection might occur.
- MRX-U is proposed to access all reconnection phases with larger λ (~10×) and higher in S (~100×). Conceptual engineering design underway, guided by state-of-the-art numerical simulations with relevant geometry and parameters.