

Production of Energetic Electrons by Magnetic Reconnection

Yuri Khotyaintsev, Andris Vaivads, Huishan S. Fu, Shiyong Y. Huang and Mats André Swedish Institute of Space Physics, Uppsala

MR2012, Princeton

Motivation

Shibata 1996

Krucker et. al, 2006

Flare vs Substorm

Shibata 1996

Miyashita 2009

Electron acceleration in the diffusion region

Cluster is inside the ion diffusion region

- initially in a thick current sheet (many c/ ω_{ni})
- first island is observed, no effect on energetic electrons

- thin current sheet (TCS) and increase electron fluxes

- second magnetic island with additional increase in fluxes

Electron acceleration in the diffusion region

Cluster trajectory

Two step electron acceleration:

- in a thin current sheet (TCS)
- inside a magnetic island

Acceleration is adiabatic and limited by the increasing gyroradius of the particles with respect to the TCS/island thickness

Not all islands have energetic electrons!

[Huang et. al., 2012, GRL]

Electron acceleration in the diffusion region

Cluster trajectory

Two step electron acceleration:

- in a thin current sheet (TCS)
- inside a magnetic island

Acceleration is adiabatic and limited by the increasing gyroradius of the particles with respect to the TCS/island thickness

Not all islands have energetic electrons!

[Huang et. al., 2012, GRL]

Dipolarization fronts – transient reconnection

Acceleration at DFs

2 SM

150

100 [kec 001

50

104

135

45

90 [geg]

800 ල

600 E

400 WSD XA

2 [cm] 2 N

0

θ

u^e

Y [B_E] (

50% of the DF events observed by Cluster are associated with measurable increase of suprathermal electron fluxes

(10^{3 Hee} Different pitch-angle distributions observed depending on the whether the FPR is growing/stable/relaxing.

> [Fu et al., 2011, GRL] [Fu et al., 2012, in preparation]

Flux pile up at DFs

Reconnection jet front (dipolarization front) is propagating slower that the jet itself

Magnetic flux pileup behind the front Increased anisotropy of Te *Whistler waves in the Flux pile up region:*

- Generated by Te anisotropy (perp>parallel)
- Effectively scatter electrons in pitchangles
- Serve as a "smoking gun" evidence for betatron effect

Energetic electrons at DFs

$$\mu = \frac{\frac{1}{2}mv_{\perp}^2}{B}$$

Acceleration is adiabatic for energies >> Te.

But not at thermal energies, due to strong scattering by waves!

[[]Fu et al., 2011, GRL]

Summary

- Acceleration of electrons at the X-line
 - In the thin current sheet
 - In the magnetic island
 - adiabatic
- Additional acceleration in the outflow region
 - related to the flux pileup at the outflow jet front
 - Adiabatic (Betatron) for supra-thermal electrons
 - Scattering by waves at thermal energies
- Unsteady reconnection enables additional acceleration mechanism