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Chromospheric conditions
- Transitions

- Plasma-β 
β>1 in convection zone and photosphere
β<1 in corona

- Magnetization
Ions and electrons unmagnetized in photosphere
Electrons magnetized in lower chromosphere (LC)
Both magnetized in upper chromosphere (UC)

- Varies from optically thick to optically thin

- Emission lines formed in non-LTE

 
- Weakly ionized, highly collisional

- c.f. corona - fully ionized, collisionless 
- Typically strongly coupled, tcollisions ~ ms

- On small time-scales/length-scales ions and 
neutrals can decouple
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Recent evidence of reconnection using SOT obs of jets (Shimizu, 2011, Shimizu et al. 2009)

Chromosphere: Collisional reconnection (Sweet-Parker Width >> λi) due to ion-neutral collision

c..f corona - Width < λi - collisionless

Q. How do we get fast reconnection in the highly collisional chromosphere?

Chromospheric anenome jet observed with 
SOT/Hinode (Singh 2011)

Reconnection signatures of chromospheric jets

Jet flow ~ Alfven speed

Alfven waves created (T~200 s)

Chromospheric reconnection
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Two-fluid physics model

Ion continuity:
∂ni

∂t
+∇.(nivi) = Γion

i − Γrec
n

Ion momentum:
∂

∂t
(minivi) +∇.(minvivi + pI + π) =

j ∧B+Rin
i + Γion

i mivn − Γrec
n mivi

Ohm’s law: E+ (vi ∧B) = ηj

• Reacting, ion-neutral model, (Meier and Shumlak 2012, PoP submitted), implemented with HiFI 

• Two-fluid approach, one fluid is ions (i), the other is neutrals (n)

• Electron impact ionization, radiative recombination

• Energy (pressure) equation contains ionization/recombination exchange, collisional heating 
and thermal transfer between plasma and neutrals and thermal conduction

• ‘Ambipolar Diffusion’ - consequence of taking single-fluid approach

• we follow dynamics of neutrals and ions separately,  η is electron collisions (Spitzer) only
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Initial conditions
−∇Pi + j ∧B = −Rin

i

−∇Pn = Rin
i

−∇(Pn + Pi) + j ∧B = 0

T ~ 8500 K

Weakly ionized plasma, n~1.4x1019 m-3

 Ionization balance ~ 0.2%
Harris Current sheet, βtotal ~1, βi~0.001

perturb both neutral and ionized pressures
add flow to couple pressure gradients

periodic 
perturbation

to Az

Zoom-in, Y-axis stretched by 10

ρi ρn

ξi T

L ~ 2Mm
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Decoupling of inflow 

Zoom-in, Y-axis stretched by 20

NeutralsIons

Outflow remains coupled vout  = va (total)
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Decoupling of inflow 

m-3

Zoom-in, Y-axis stretched by 20

Ions Neutrals

Outflow remains coupled vout  = va (total)
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Scaling 

(Heitsch and Zweibel 2003) 

Steady State, Two fluid

Ion continuity: ni,exvinL = ni,cs(voutδ + δLτrecomb − δLτioniz)

: τinflow =
ni,cs

ni,ex
(τoutflow + τrecomb − τioniz)

τinflow = vin/δ, τoutflow = vout/L

Ohm’s law: vinB = ηj ∼ ηB

µ0δ

Inflow: vin =

�
η

µ0

ni,cs

ni,ex
(τoutflow + τrecomb − τioniz)

If ionization balance: τioniz = τrecomb, vout = vA(total), ni,cs ∼ ni,ex

:
vin
vA

=

�
η

µ0LvA
=

�
1

S
, or: M =

ηj

vAB
=

δ

L
.

Out of ionization balance: τrecomb >> τioniz, τoutflow

L

vin

vout

B

δ

ni,ex

ni,cs

(Heitsch and Zweibel 2003)
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Ions dragged in - decouple from neutrals - loss of ionization balance

Q. How does τrecomb affect the scaling with Lundquist number (S)?

Ionization imbalance: recombination rate vs outflow rate

Zoom-in, Y-axis stretched by 20

τrecomb >> τoutflow
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Reconnection rates

Chromosphere

Two-fluid 
(ion+neutral)

Single-fluid w/    AD
Single-fluid w/o  AD

- Single-fluid: ~ Sweet Parker scaling (M~√(1/S), δ~√η)
- Two-fluid:

-  Reconnection rate, M, ‘fast’ - independent of S,  δ~η
- Dependent on transport coefficients

S~5x104

S~1x104

S~4x103

Friday, May 25, 2012



Comparison to previous analytic work (Heitsch and Zweibel 2003)

- Astrophysical magnetic current sheets (protoplanetary disks)
- Two-fluid (reacting) model, no thermal conduction

-1D steady state (no need for outflow if τrecomb >> τoutflow)
- Cover Lundquist number (S) 104-1012

Our 2D simulations

What about higher S, and plasmoid instability (2D)?
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Recent results: Onset of the plasmoid instability at higher S

- Plasmoid instability sets in for higher S,  when δ/L ~1/300 
(Loureiro et al. 2007, Huang and Battacharjee 2010)

- As we increase S (decrease η): 
 - For two-fluid model δ~η (single-fluid δ~√η) 

- plasmoid instability sets in at higher η (lower S) than single-fluid

Zoom-in, Y-axis stretched by 40

ρi jz
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Recent results: What happens to the plasmoids?

- Recombination dominates over outflow in resistive region
- Plasmoids lose flux rather than get ejected by outflows

Zoom-in, Y-axis stretched by 40
ρi jz
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Conclusions

- Multi-fluid simulations of chromospheric reconnection in weakly ionized reacting  
plasma
- Reconnection rates independent of S, even at low S: 104 - 105

- decoupling of inflow creates ionization imbalance
- recombination of incoming ions dominates over outflow

- Onset of plasmoid instability occurs as S is increased 106

- onset occurs at lower S than single fluid, due to ‘fast scaling’
  Questions

- How does ‘fast’ reconnection rate depend on (neutral) transport coefficients?
- How do plasmoids affect weakly ionized reconnection (scaling)?

- early work sees continuation of S-independent rate for higher S 
- How does decoupling of ions from neutrals affect the decoupling of ions from 
electrons? (Malyshkin and Zweibel 2011)

‘Multi-fluid simulations of magnetic reconnection in a weakly ionized reacting plasma’
Leake, Lukin, and Linton 2012, in prep

Funded by the Living with a Star (LWS) Targeted Research and Technology (TRT) Program
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Appendix: Literature
• Zweibel 1989 

• For t < 1/τin , CA ~ B/√ρtot  

• For t > 1/τin , CA ~ B/√ρi 

• ionization rate and amount of decoupling affect growth of tearing mode

• Brandenburg and Zweibel 1994,1995

• ‘Ambipolar diffusion’ (effect of ion-neutral collisions in a single-fluid approach) can lead to steepening of current sheets in ISM

• Vishniac and Lazarian 1999, Heitsch and Zweibel 2003, Lazarian et al. 2004

• Recombination of inflowing plasma can increase reconnection rates

• Smith and Sakai 2008

• Reconnection rates between two flux system are dependent on proton density to neutral Hydrogen density ratio

• Malyshkin and Zweibel 2011

• Ion neutral collisions increases effective skin depth, so Hall reconnection is important at larger scales
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Appendix: HiFi numerical code

- Main developers:  V.Lukin (NRL),  A. Glasser (Univ. of Washington)
- PDE Formulation: generic flux-source form of the equations
- Spatial discretization: high order C0 spectral elements - low 
numerical dispersion + adaptable grid + domain decomposition + 
semi-structured grid
- Time step: fully implicit 2nd-order accurate, Newton iteration, 
direct or iterative solvers
- PDE Formulation: generic flux-source form of the equations
- User-specified physics file: transparent modification of equations
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Appendix: Recombination of ions in plasmoids

Zoom-in, Y-axis stretched by 40

τrecomb >> τoutflow
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