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What controls the acceleration of the plasma crossing
into the reconnection exhaust?

 Standing Switch-off Slow Shocks are the key fo Petscheck's model.

(Petschek 1964)

» X-ray emissions at solar flares are related to these slow shocks.
(Tsuneta 1996, Longcope & Guidoni 2011)

What happens in collisionless plasmas?

e In-situ observations of Switch-off Slow Shocks are rare.
(Seon et al. 1996)

* No Switch-off Slow Shocks seen in kinetic reconnection simulations
(hybrid & PIC).

(Lottermoser, Scholer & Matthews 1998, Lin & Swift 1996)
« Strong firehose-sense temperature anisotropy (T”>Tper) due to the

counter-streaming ions.
(Gosling et al. 2005, Hoshino et al. 1998)

— Q: 1 not Switch-off Slow Shocks, what 1s bounding
the reconnection exhausts?



Petscheck 101




Structure of the reconnection exhaust

2D PIC simulation, mi/me=25
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Development of long reconnection exhaust

mi/me=25
* Long Petschek-like open exhaust.
e Short (di) scale waves are radiated from the center.



I Companion Riemann Problems show similar plateaus
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e £ = 0.25 is always associated with the onset of rotational waves

behind a slow shock! Why?

P - P,
BE ."Ir.H'CJ

e=1-—




Anisotropic Rankine-Hugoniot Jump Conditions

(Chao 1970, Hudson 1970)
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The analysis of shock Pseudo-Potential
(From Switch-off Slow Shocks to compound SS/RD waves)

|sotropic fluid theory Anisotropic fluid theory

(when anisotropy is strong enough...)
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downstream transition
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— Switch-off Slow Shock (SSS) — compound SS/RD wave

* Pseudo-particle cannot access to the origin and cannot form SSS

- Instead, a compound Slow/Intermediate wave forms.
* Underline physics: intermediate mode becomes slower than slow mode.
— Linear modes analysis: Abrham-Shrauner 1967; Hau & Sonnerup 1993; Walthour et al. 1997



‘ Compare with sitmulation

Companion 1D Riemann Problem
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;‘; The significance of 0.25 1n anisotropic fluid theory
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y=5/3 for monatomic plasmas

y From a simplified equation
. If Eo < (3y-4)/(3y-1) = 0.25, .
— nonlinearity "a ~(3y-1)€o-(3y-4) " changes sign

— Slow mode becomes fast-mode-like.
— there is no slow mode transition!
« € = 0.25 is an “absolute” barrier that a SSS cannot cross.

* In the oblique limit, a general critical € that a SSS cannot reach,
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| r X Rankine-Hugoniot Jumps

N Y vs. 1D Riemann structure
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l Rankine-Hugoniot Jumps
Mo 5 vS. reconnection exhaust structure
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Observation: Reconnection exhaust crossing

upstream downstream
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Observation: Reconnection exhaust crossing- 2

downstream upstream
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Summary

* & = 0.25 plateau forms at reconnection exhaust boundary.

« & = 0.25 is a special point in RH jump conditions.
— It is closely related to the degenerate behavior of
slow & infermediate modes due to the temperature anisotropy.

» Switch-off Slow Shocks cannot transition to € < 0.25,
— therefore Petschek's Switch-off Slow Shocks cannot be realized.
— this explains the rareness of SSSs in space.
— Overall, a compound Anomalous Slow Shock/Intermediate wave forms.

* The reconnection outflow speed is usually slower than expected.
— due to the firehose unstable region
— reconnection outflow is driven by A-SS

« & = 0.25 should be an in-situ observable signature in tail reconnection.
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Anisotropic Rotational Discontinuity
(Hudson 1970)

Consider entropy condition
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* Hudson thinks although 0.25 is special, but not important in space.
* Out of Hudson's surprise,

— We find a place to reveal the specialty of 0.25.
— it is inside the reconnection exhaust!!



The setup of our PIC Riemann simulations

Normal direction
— X

simulation box
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t1 %imulation box
t2 é'@\ulation box
t3 sim\il\.{cion box

* Initial profile:
Harris Sheet| BzzBo’ranh(x/w) 1+B

* Driven by the unbalanced magnetic
tension force.

* It is a Riemann problem.
(Scholer & Lottermoser et al. 1998,
Lin & Lee et al. 1993)

* Use time as a proxy of space

* A much longer domain in the
normal direction. (~ 800 di)

« 6, is one of the key parameters
that controls the propagation angle.



The way of determining the Mach number

(a) 30° and 75° Riemann

fup

(b) 75° Riemann (c) Reconnection up

0.9 30°
0.8t
07t

0.6

| /
0.3 ‘1\ o vﬁ" IIIIII h‘m er"v
0.2 \;\)\1 }l
0.; - I ':Hi )f I
0 0.2 0.4 B 0.6 0.8 1

— Increase MIu till the SS solution curve
intersects with the data curve at €=0.25



Being slightly super-intermediate...

* The analysis of slow and

intermediate characteristics

shows the formation of
compound A-SS/IS wave
(Liu et al 2011)
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The rotational part of the SS/RD 1s not stable!

(a) QBN_75 w,=10 50- 500/QC| _ .(b).
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* The rotational part of SS/RD tends to break into ion inertial scale waves!
— spatially modulated rotational wave radiates dispersive waves.
& is raised by scattering from these di-scale waves.
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‘ Anisotropic Derivative Nonlinear Schrodinger-Burgers equation
=) =

r n Extend the work of Kennel et al. 1990
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bt: transverse magnetic field

Dissipation Dispersion

The difference between the slow and intermediate characteristic speeds is:

)\SL — )\j’ = 2&!5? + Q(gEmbt

Therefore, the slow and intermediate modes degenerate (i.e., have the same speed) at:

bt = () The traditional degeneracy point
2aby + Qoep, = 0

New degeneracy points due to
- :
the temperature anisotropy!!
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Calculate the pseudo-potential
(Sagdeev potential)

Looking for stationary solutions: by = by[é(n — VgT)]

/...dg

Shock speed

¢ — time
bt — spatial coordinate
1 o ;
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force force
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* The pseudo-potential characterizes the nonlinearity of this wave system.
* Resistivity sinks pseudo-particles to the potential low — shock transition
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