US-Japan Workshop on Magnetic Reconnection MR2012@Princeton

Three-dimensional Magnetohydrodynamic Simulations of Disk Dynamos

Ryoji Matsumoto (Chiba Univ.) and Mami Machida (Kyushu University)

Solar Dynamo Cycle

X-ray Image by HINODE Satellite (May 20, 2012)

Optical image of sunspots by HINODE

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

1940 DATE

NASA/MSFC/NSSTC/HATHAWAY 2007/05

Butterfly Diagram of Sunspots (NASA)²

1930

1920

1900

http://solarscience.msfc.nasa.gov

1910

Magnetic Fields in Our Galaxy

Rotation Measure (Taylor et al. 2009)

Distance from the Sun: X (kpc)

Galactic magnetic field measured by Faraday Rotation (Han et al. 2002)

Amplification of Magnetic Fields by Magneto-rotational Instability (MRI)

Can We understand Disk Dynamos by MRI ?

- MRI: $B\phi \rightarrow Br: \alpha$ -effect $Br \rightarrow B\phi: \omega$ -effect
- No flux amplification by MRI !
 <B²> increases but <Bφ> is conserved
- No field reversal (no dynamo cycle)
- We should include vertical gravity to take into account the effects of magnetic buoyancy, which is essential in solar dynamo

Buoyant Rise of Magnetic Loops

Initial condition

Machida et al. 2000

Global 3D MHD Simulation of Galactic Gas Disks

- Gravitational Potential
 - Axisymmetric potential by Miyamoto (1980)
- Initial Condition
 - Constant angular momentum torus
 - Weak Azimuthal field
- Absorbing boundary condition at r=0.8kpc

250*64*319 mesh

Nishikori et al. 2006

Result of Simulation

t = 3.8 Gyr

3.5Gyr

Reversal of Mean Azimuthal Magnetic Fields

How are Azimuthal Magnetic Fields Reversed ?

Butterfly Diagram

time

time

Azimuthal Magnetic fields

Machida et al. 2012

Dynamo Cycle obtained by Local 3D MHD Simulations

Miller and Stone 2000

white: $\beta = 1$

Shi et al. 2010

Time Variabilities of Azimuthal Field ¹²

Quasi-Periodic Oscillations (QPOs) Observed in Black Hole Candidates

McClintock and Remillard 2004

Magnetic Reconnection in Disks

Current density (color) and magnetic field lines (Machida et al. 2003)

Magnetic fields are tightly wound and reconnect inside the disk when buoyant rise is suppressed

Growth of the Cooling Instability

temperature

density

Toroidal field

Machida et al. 2006

Formation of a low- β Disk

Before cooling

After cooling

 $\beta = Pgas/Pmag$

Schematic Picture of the Formation of a Magnetically Supported Disk

Optically Thin Hot Disk Supported by Gas Pressure **Optically Thin** Cool Disk Supported by Magnetic Pressure

Summary and Discussion

- Disk magnetic fields are amplified by the dynamo driven by MRI and buoyant rise of magnetic flux
- Mean azimuthal magnetic fields change their direction quasi-periodically with time scale of about 10 rotation period. This dynamo cycle can be the origin of low-frequency Quasi-Periodic Oscillations (QPOs) observed in black hole candidates
- Magnetic reconnection taking place inside the disk can limit the strength of disk magnetic fields and can be the origin of sporadic X-ray time variabilities observed in black hole candidates

END