MR2012, May. 23, 2012

Kinetic aspects of the vortex-induced reconnection in collisonless plasmas: 2D & 3D full PIC simulations

> Takuma (T.K.M.) Nakamura (Computational Physics Division/LANL)

Collaborators: W. Daughton (XCP/LANL) H. Karimabadi, V. Roytershteyn (UCSD) H. Hasegawa, I. Shinohara (ISAS/JAXA)

Simulation codes:

Electromagnetic relativistic particle-in-cell code developed in Japan

Electromagnetic relativistic particle-in-cell code developed in LANL (VPIC)

Computers:

LANL's and JAXA's supercomputers for 2D Jaguar (Oak Ridge Leadership Computing Facility) for 3D

Reconnection + velocity shear

◆Basically, the velocity shear reduces the reconnection rate [e.g., Cassak & Otto, 2011].

BUT, super Alfvenic shearing flow produces the Kelvin-Helmholtz instability.
 The resulting KH vortex can induce reconnection.

KH vortex at the Earth's magnetopause

At the planetary magnetopause, the velocity shear between solar wind and magnetospheric plasmas increases with down tail distance.

 \rightarrow KH vortices would grow along the tail-flank magnetopause.

→ Indeed, in-situ observations have confirmed the rolled-up vortices there. [e.g., Fairfield et al., 2000; Hasegawa et al., 2004, 2006, using Geotail, Cluster, THEMIS].

Q. Can the vortex-induced reconnection also occur there?

VIR at the Earth's magnetopause

The type-I VIR by two-fluid simulation [Nakamura et al., 2008]

A. Yes.

 \rightarrow Linear analyses suggested that the vortex-induced reconnection (VIR) commonly appear at the Earth's magnetopause [Nakamura et al., 2006, 2008].

← This is because the magnetic shear (the current sheet) always exists at the magnetopause.

♦Note that the VIR can lead to plasma mixing along reconnected field lines, and would form the part of the tail-flank low-latitude boundary layer (LLBL).

1. 2D symmetric case [Nakamura et al., JGR, 2011]

(Plasmas and fields are symmetric across the boundary)

2. 2D asymmetric case [Nakamura et al., in prep.] (considering **density jump** across the boundary)

3. 3D symmetric case [On-going]

1. 2D symmetric case [Nakamura et al., JGR, 2011] (Plasmas and fields are symmetric across the boundary)

2. 2D asymmetric case [Nakamura et al., in prep.] (considering **density jump** across the boundary)

3. 3D symmetric case [On-going]

Symmetric case [Nakamura et al., JGR, 2011]

Method: 2.5-dimensional full kinetic PIC simulation developed in Japan [Hoshino, 1987]

-Initial parameters-

- N0=Ni0 (uniform)
- •Bzo=4*Bo (uniform)
- Bx0=B0*tanh(Y/D0) (current sheet)
 Vx0=V0*tanh(Y/D0) (velocity shear layer)
- -Do=2.0 [di] (MHD-scale boundary layer)
- MA=V0/VA0=4.375 (strong KHI) (KHI can grow when MA>2 [Miura & Pritchett, 1982])
- •Lx=λкн=20D0

(~fastest growing KH mode [Miura & Pritchett, 1982])

- •Other parameters:
 - Ti_cs/Te_cs=1/8, Ti_bg/Te_bg=1
 - Mi/Me=25,100
 - ωpe/Ωe=2.0
 - 100 particles/grid

Overview of symmetric case [Nakamura et al., 2011]

(T<50) The KHI grows and locally compresses the current sheet.

 $(T\sim50)$ Multiple reconnection occurs at the compressed thin current sheet.

 $(T\sim 80)$ Finally, the KH vortex is highly rolled-up as a large magnetic island.

Multiple island formation [Nakamura et al., 2011]

(T=30-50)The strong vortex flow produces a thin and long current sheet.

(T=60-80)
 Multiple magnetic islands are formed and move toward the main body of the vortex.

(T~80)

Multiple magnetic islands are incorporated in turn into the vortex body via the re-reconnection.

Asymmetric case [Nakamura et al., in prep.]

Method: 2.5-dimensional full kinetic PIC simulation developed in LANL (VPIC) [Bowers., 2008, 2009]

-Initial parameters-

•N1 : N2 =1 : 0.4 (density jump) •Bx1: Bx2 = 1 : 1.875 Bz0=uniform(5B0) Region-2: Bzo=5*Bo (uniform) Low density 1.9Bo V₀ $(N_2=0.4N_0)$ Vx0=V0*tanh(Y/D0) -y=4/3Lx 2D0 • D₀=2.0 [di] (MHD-scale) velocity shear layer = current layer MA=V0/VAx1=7.0 (strong KHI) -Lx=λκH=15D0 Region-1: $-B_0$ $-V_0$ High density •Other parameters: $(N_2 = N_0)$ - Ti/Te=2.5 - Mi/Me=25,100 - $\omega_{pe}/\Omega_e = 1.25$ Lx=λκΗ - 100 particles/grid

Overview of asymmetric case

V0=7.0ViA1, D0=2.0λi, N1 : N2=1 : 0.4

 $(T\sim 119)$ Multiple islands are formed in the compressed current sheet.

♦(T~150) Secondary KH waves grow within the parent vortex.

 $(T\sim 240)$ **Turbulence** is produced within the vortex.

Unstable secondary shear layer

◆The density jump leads to the formation of the secondary velocity shear layer.

◆The VIR releases in-plane magnetic field within the vortex.

◆The 2ndary shear layer is always unstable for the 2ndary KHI within the vortex.

Plasma mixing in asymmetric case

Summary (2D)

◆The VIR process accompanies the multiple island formation in the compressed current sheet.

→The multiple island formation leads to the **efficient plasma mixing** within the vortex.

◆The density jump across the shear layer leads to the formation of the secondary shear layer.

◆The VIR can release the in-plane magnetic field within the vortex, and hence the secondary KH instability is always unstable within the vortex.

→Resulting secondary KH waves eventually cause turbulence within the vortex.
→The turbulence formation enhances the plasma mixing within the vortex.

2D v.s. 3D (symmetric case)

~ 2D run ~

- Lx x Ly = 2048 x 1368 = 60di x 40di (Mi/Me = 25)
- 7.3 x 10⁸ particles (260 particles/cell)

~ 3D run ~

- Lx x Ly **x Lz** = 2048 x 1368 **x 1024** = 60di x 40di **x 30di** (Mi/Me = 25)
- 7.5 x 10¹¹ particles (260 particles/cell)

2D v.s. 3D (symmetric case)

◆3D magnetic shear exists along the edge of the vortex.

- \rightarrow 3D reconnection occurs and produces flux ropes there.
 - \rightarrow 3D reconnection disturbs the vortex structure and causes turbulence.
 - \rightarrow Inside and outside of the vortex are connected by 3D reconnection (flux ropes).
 - \rightarrow Plasmas inside the vortex can be transported outside the vortex.
 - \rightarrow Mixed area broadens even outside the vortex.

Consequently, plasma mixing in 3D progresses more quickly than 2D.

2D v.s. 3D (symmetric case)

Consequently, plasma mixing in 3D progresses more quickly than 2D.

Summary

◆In 3D, the vortex layer becomes turbulent even in the simple symmetric case.

→3D turbulence enhances the plasma mixing.

→ The KH vortex in collisionless space plasmas would generally cause turbulence and efficient plasma mixing.