# Dynamics of braided coronal loops



#### David Pontin (University of Dundee, UK)

collaborators: Antonia Wilmot-Smith, Gunnar Hornig (University of Dundee, UK) Anthony Yeates (University of Durham, UK)

# 'Topological Dissipation'





Parker, E.N., ApJ, **174**, 499 (1972).

Model solar loop as braided magnetic field between parallel plates.

# The model magnetic field



- Pigtail braid
- Net helicity (twist) is zero

 Could be generated by sequence of opposite-sense rotations at photosphere



Achieved in practice by adding regions of twist to uniform B Aspect ratio (1:10), low twist consistent with observed loops Conservative approach: free energy only ~3% above potential



# Simulation setup

 Take field and first perform an ideal relaxation

• Then transfer to resistive MHD code:  $I \times \underline{B} \approx 0$ , and initialise with a uniform background plasma





t= 0.0 , J\_max= 2.10





#### Reynolds number comparison

|**J**| at z=0

η=10-3





#### Reynolds number comparison

|**J**| at z=0

η=10-3





#### Reconnection rate

Procedure, at each time:

- Integrate along an grid of field lines:  $\Phi = \int E_{\parallel} ds$ .
- In 2D  $\Phi$  profile, seek peaks.
- Sum moduli of  $\Phi_{max}$  and  $\Phi_{min}$  to obtain global rec rate





Spatial coords indicate fieldline intersection with z=0 plane

### Reconnection rate

- Rec rate increase a result of splitting into multiple rec regions
- (note: length of field lines = 48)

- Overall reconnected flux:
  - Total poloidal (xy) flux at t=0 :  $\approx 30$

at t=300:  $\approx$  15.3

- Total reconnected flux  $\approx 41.2$
- Flux is multiply reconnected cf. Parnell et al. 2008

![](_page_10_Figure_8.jpeg)

t

# Rec rate comparison

- As  $\eta$  is decreased:
  - \* No. of individual rec regions increases
  - Global rec rate varies (at most) weakly
  - \* Cumulative rec'd flux increases
- Starting with 30 units poloidal flux:

| η                 | units rec'd | units remaining |
|-------------------|-------------|-----------------|
| I 0 <sup>-2</sup> | 24.5        | 13.1            |
| I 0 <sup>-3</sup> | 41.2        | 15.3            |
| 2×10-4            | 61.8        | 16.1            |

(grey 
$$\eta = 10^{-2}$$
; dashed  $\eta = 10^{-3}$ ; black  $\eta = 2 \times 10^{-4}$ )

![](_page_11_Figure_8.jpeg)

# Final state non-potential

- Initial state has net helicity zero
- Taylor relaxation would predict homogeneous B as final state
- Twist not all cancelled
- In fact final state approximates *non-linear* fff, containing flux tubes with positive and negative twist

![](_page_12_Figure_5.jpeg)

Map of 
$$\frac{J_{\parallel}}{B}$$
 at z=0

![](_page_12_Picture_7.jpeg)

50% isosurface of

# Summary

- Braided field undergoes instability, leading to 'turbulent cascade' with many reconnection events, field 'unbraids'
- Recursive reconnection of flux: poloidal flux reconnected multiple times
- For lower η:
  - \* 'Cascade' enhanced in complexity and duration for lower  $\eta$ .
  - \* Average number of reconnections increases
- Although net helicity is zero, final state does not manage to annihilate all twist (no Taylor relaxation)
- J sheets fill volume effectively ( $\rightarrow$  expect uniform heating of loop?)
- Low threshold (free energy only a few %) makes it a mechanism for 'background' heating

Pontin, D.I., Wilmot-Smith, A.L., Hornig, G., Galsgaard, K., Dynamics of Braided Coronal Loops - II. Cascade to Multiple Small Scale Events, A&A, 525, A57 (2011)

Wilmot-Smith, A.L., Pontin, D.I., Hornig, G., Dynamics of Braided Coronal Loops - I. Loss of Equilibrium, A&A, 516, A5 (2010)

# Thanks for listening

References:

- Pontin, D.I., Wilmot-Smith, A.L., Hornig, G., Galsgaard, K., Dynamics of Braided Coronal Loops - II. Cascade to Multiple Small Scale Events, A&A, 525, A57 (2011)
- Wilmot-Smith, A.L., Pontin, D.I., Hornig, G., Dynamics of Braided Coronal Loops - I. Loss of Equilibrium, A&A, 516, A5 (2010)

and

- Wilmot-Smith, A.L., Pontin, D.I., Yeates, A.R. and Hornig, G. Heating of braided coronal loops, A&A, 536, A67 (2011)
- Yeates, A.R., Hornig, G. and Wilmot-Smith, A.L. Topological Constraints on Magnetic Relaxation, Phys. Rev. Lett., 105, 085002 (2010)
- Wilmot-Smith, A.L., Hornig, G. and Pontin, D.I. Magnetic braiding and parallel electric fields, ApJ, 696, 1339 (2009)